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a b s t r a c t

The topology of a power system has a profound impact on its reliability. If a power system faces a
contingency, for example a loss of a transmission line or a transformer, this contingency might, in worse
case, lead to a blackout. Since the Y-bus matrix contains information about the structure, the line
impedances, the loading in each bus and is commonly used in power system calculations it can be used
to evaluate the topology of the transmission system. This paper reports on the relation between the
eigenvalues to the Y-bus matrix and the underlying graph representing the topology of the transmission
system. The paper also proposes four different indices’ based on the spectrum to the Y-bus matrix and the
corresponding Laplacian matrix to be used to evaluate power system topologies. In addition, this paper
will also show how the so called algebraic connectivity and the mean impedance in a graph is related
and how the mean impedance can be calculated through the eigenvalues to the Laplacian matrix and
the Y-bus matrix. In a numerical example, the indices’ on the Nordic32 system is presented.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The topology of a power system has a profound impact on its
reliability. If a power system faces a contingency, for example a
loss of a transmission line or a transformer, this contingency might
in worse case lead to a cascading line tripping and/or a voltage
collapse [1] resulting in a large scale blackout for the power
system. Larger security margins can be applied to reduce this risk.
However, it is desirable to fully utilize the capacity of a power sys-
tem. Further, when evaluating topologies of a power system,
extensive and time consuming heuristic methods are used. Three
examples are found in [2–4]. Heuristic search methods, such as
brutal force, are time consuming when evaluating large scale
power systems since the number of states a power system can take
is of order 2n where n is the number of failure prone components.
An approach to only evaluate the most probable states of a trans-
mission system is made in [2] and an example on a heuristic search
method to find critical components in a power system is made in
[4]. Here, a component that will cause a blackout or substantially
increase the risk for a blackout when removed is defined as a crit-
ical component. However, when introducing e.g. a new transmis-
sion line in a power system the components that are critical in
the new power system will be different from those who are critical
before. Since this new transmission line can be connected in a large
number of ways, finding how to connect this line in order to
minimize the number of critical components, or to maximize the
reliability of the power system is an ever more challenging and

time consuming task. The complexity of the problem rises quickly
if two or three new components are introduced. In order to find
good candidates it is therefore necessary to evaluate different
topologies efficiently. Here, an efficient method refers to a method
with a computational complexity that can be solved in a polyno-
mial time. This is one example of why it is important to efficiently
evaluate a topology in a power system.

Graph theory has emerged as a powerful tool to commonly be
used in power system calculation of various kinds. Some examples
from various authors are found in [5–13].

However, none of these works have investigated the spectrum
of the Y-bus matrix which is commonly used in power system
calculations. The Y-bus matrix contains information about the
topology, impedance and the loading in the system. The Y-bus
matrix is obviously not a Laplacian matrix which is well explored
in graph theory calculations. However it is only the diagonal
elements, i.e. the loading in the system, which differ. For a
Laplacian matrix, the algebraic connectivity is a graph theoretical
measure for how well connected a graph is. The algebraic
connectivity is the second smallest eigenvalue to the Laplacian
matrix. The algebraic connectivity of a graph and the correspond-
ing eigenvector have been used in several areas in mathematical
research e.g. [14–16]. This particular eigenvalue has been found
to give reasonable bounds on several properties on graphs which
are very hard to compute, for example the mean distance [17],
the diameter [17,18] and the isoperimetric number [19]. These
works have showed that the second smallest eigenvalue imposes
non-trivial bounds which can be viewed as measures of connectiv-
ity for a graph. Therefore, it seems reasonable to investigate the
eigenvalues the Y-bus matrix.
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This paper investigates the spectrum to the Y-bus matrix. The
paper reports on the relation between the eigenvalues to the Y-
bus matrix and the underlying graph representing the topology
of the transmission system. The paper also proposes four different
indices’ based on the spectrum to the Y-bus matrix and the corre-
sponding Laplacian matrix to be used to evaluate power system
topologies. In addition, this paper will also show how the algebraic
connectivity and the mean impedance in a graph is related and
how the mean impedance can be calculated through the
eigenvalues to the Laplacian matrix and the Y-bus matrix (i.e. the
admittance matrix).

The paper is structured into seven sections. Section 2 gives an
introduction to the Laplacian graph theory and shows how the
mean impedance is can be calculated via the Moore–Penrose
inverse. Sections 3 and 4 shows how the relation between the Y-
bus matrix and the Laplacian matrix. Section 5 proposes four
indices’ divided into two classes based on the calculations in Sec-
tions 3 and 4. Section 6 shows this indices’ on the Nordic32 bus
transmission system. Section 7 gives conclusion.

2. The Laplacian matrix

This section will show the relation between the mean
impedance and the spectrum to the Laplacian matrix. The standard
terminology of graph theory, as it is introduced in most text books,
is used. Let the topology of a power system be represented by a
graph, G ¼ ðV ; EÞ, in a natural way, where substations are repre-
sented by a set of vertices V and transmission lines by a set of edges
E with arbitrary directions. Further, let C ¼ ½cvw� be the jEj � jV j ori-
ented incidence matrix of G with entities

cvw ¼
1 if v is the terminal vertex of w;

0 if v and w are not incident;
�1 if v is the initial vertex of w:

8><
>:

ð1Þ

Moreover, let DðGÞ be a diagonal matrix where D ¼ ½dkk�, is a
weight on edge k which connects vertices v and w. The generalized
lapacian matrix for the graph G is then given by

QðGÞ ¼ CT DC; ð2Þ

where QðGÞ 2 Cm�m. If the weights in the generalized Laplacian are
admittances, the matrix is commonly referred to as the admittance
matrix or the Kirchhoff’s current matrix. It is well known that these
matrices are symmetric, singular and positive semidefinite [20,21].
The eigenvalues and the eigenvectors are referred to as the Lapla-
cian eigenvectors and the Laplacian eigenvalues and is given by

QðGÞUi ¼ liUi; ð3Þ

where Ui ¼ ðu1i; . . . ;uniÞT is the Laplacian eigenvector i and li is the
corresponding eigenvalue i. Since

QðGÞe ¼ 0; ð4Þ

where e is the unit vector i.e. e ¼ ½1; . . . ;1�T , one eigenvalue will al-
ways be zero. From the Perron–Frobenius theorem [14], it follows
that two eigenvalues are zero, if and only if the graph is not
connected. Here, graphs which are connected is considered, that is
only one eigenvalue are zero. Let U be the matrix containing the
eigenvector, then

UT QðGÞU ¼ diagðl1; . . . ;lnÞ: ð5Þ

Here, diag denotes a diagonal matrix. The element QðGÞij is given by

QðGÞij ¼
Xn

k¼1

lkukiukj: ð6Þ

The matrix U is orthogonal and therefore

UT U ¼ UUT ¼ I; ð7Þ

where I is the unit matrix. If the weights on the edges are
admittances, the impedance between any two vertices in an electri-
cal network can be computed via the Moore–Penrose generalized
inverse Q y of the Laplacian matrix. Recall that the Laplacian matrix
is singular, and therefore it has no usual inverse. However, the
Moore–Penrose generalized inverse is defined and unique for all
matrices whose entries are real or complex numbers [22]. The
impedance between two nodes v and w in the network is given by

Xvw ¼ QðGÞyvv þ QðGÞyww � 2QðGÞyvw; ð8Þ

here, Xvw is the impedance measured between v and w. The matrix
containing the impedance between all pairs of nodes in an electrical
network is referred to as the resistance matrix, �R ¼ ½rvw�, and is
given by [20]

�R ¼ 1diagðQ yÞ þ diagðQ yÞ1T � 2Q y; ð9Þ

where 1 denotes a column vector with only ones and diagðQ yÞ
denotes a row vector consisting of the diagonal entries of Q y. Using
Eqs. (6) and (8) the impedance between two vertices can be
expressed in terms of eigenvalues and eigenvectors according to

Xvw ¼
Xn

k¼2

1
lk
ðukv � ukwÞ2: ð10Þ

The mean impedance between all buses can therefore be
expressed as

�X ¼ 1
n

Xn

k¼1

1
lk
: ð11Þ

Here it can be noted that the algebraic connectivity has the
largest contribution to the mean impedance in the sum. The mean
impedance can be seen as the expected impedance when the
impedance is measured between two nodes/buses picked by
random.

3. The reduced admittance matrix

For an electrical system, the relation between injected current
and node potentials is given by

Qu ¼ J: ð12Þ

Here, u 2 C is a vector containing the voltage magnitude at each
bus, J 2 C is a vector for the currents injected into each bus and Q is
the admittance matrix, or in other words, the weighted Laplacian
matrix to the system. In order for the Kirchhoff’s current law to
hold, the sum of all elements in J must be zero. There is an infinity
amount of solutions to this equation all differ by a constant vector.
However, the difference in node potential is always well defined.
When considering a power system, one node is usually set as a
grounding node and assigned a node potential of 0. When this is
done, a reduced admittance matrix can be constructed by
removing the corresponding row and column from Q. This
particular admittance matrix, normally denoted Y in power system
calculations, is non-singular and its inverse is therefore well
defined. The corresponding potential vector and current vector is
obtained by removing the grounding node from the vectors. Let
these reduced vectors be denoted U and I. The vector I should
not be confused with the index matrix. In this formulation, there
are no restrictions on I since currents are entering the grounded
node. Using this notation, the familiar relation between voltage
and injected currents are given by

YU ¼ I: ð13Þ
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