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a b s t r a c t

This paper presents an algorithm for reducing the operating cost of microgrids. The proposed algorithm
determines the day-ahead microgrid scheduling and builds a fuzzy expert system to control the power
output of the storage system. To perform such tasks, two genetic algorithms were employed. One of them
generates the microgrid scheduling and determines the fuzzy rules of the expert system, whereas the
other is used to tune the membership functions. In this way it is possible to optimize the expert system
according to load demand, wind power availability and electricity prices. Simulations were carried out in
a microgrid comprising a diesel generator, a microturbine, a fuel cell, a wind turbine and a battery. Both
interconnected and island operation modes were considered. Simulation results verify the effectiveness
of the proposed algorithm.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

Recently the traditional energy network has been undergoing
important changes. The penetration of distributed generation has
been prompted by several factors such as environmental issues,
market deregulation, incentive polices and the growth of global
electricity demand. The benefits of distributed generation can
include reliability enhancement, power loss reduction, improve-
ment in power quality, the integration of renewable sources and
the provision of ancillary services. However, distributed generation
can also have negative effects on power stability, network security,
system voltage, power system control, etc. [1–3]. It is in this con-
text that microgrids (MGs) arise as a platform where distributed
generation technologies can be readily integrated into the distribu-
tion network.

A microgrid is a group of interconnected loads and distributed
energy resources within clearly defined electrical boundaries that
act as a single controllable entity with respect to the grid [4].
Depending on the circumstances, it can operate either in parallel
with the main grid or in island mode. For the main grid, the micro-
grid may be seen as a controllable unit that can respond to central
control. Micro-sources comprising the MG include technologies
such as diesel generators (DGs), fuel cells (FCs), microturbines
(MTs), photovoltaic panels and wind turbines.

As for large power systems, the generation scheduling in
microgrids is performed by solving the unit commitment and eco-
nomic dispatch problems. Unit commitment involves determining
the schedule of generating units within a power system subject to
device and operational constraints. In turn, economic dispatch is a
subroutine of the unit commitment aimed at locating optimal
outputs of generators so that the entire load may be supplied in
the most economic way [5]. However, owing to differences
between large power systems and microgrids, special consider-
ations must be taken into account when performing the unit
commitment in this case. Some of the most important features
of MGs affecting the unit commitment problem are listed below
[6–9]:

� MGs usually have a high penetration in renewable sources,
which makes it difficult to determine in advance the power
available at any instant in the future.
� MGs are usually radial or weakly meshed low voltage networks,

which are more prone to problems such as over/under voltage
or overloading when the load/generation condition is changed.
� The presence of storage devices, as well as the possibility of

exchanging energy with the main grid, adds flexibility to MG
operation, but also it increases the solution space of the unit
commitment problem.
� The small size of the generators that comprise an MG makes it

possible to switch them on and off with a higher frequency than
in large power plants.
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� Due to the distance between producers and consumers, conges-
tion in transmission lines in large power systems is probable.
However, in microgrids local load is satisfied mostly by local
generation, and therefore the possibility of dealing with such
a problem is significantly lower than in the previous case.

During the last decade many papers related to energy manage-
ment in microgrids have been published. Some of the techniques
employed to deal with the unit commitment problem in large
power systems are utilized in MGs as well. In [7], a genetic algo-
rithm (GA) based method was proposed to solve the unit commit-
ment problem. To accelerate the solution search a simulated
annealing based operator was devised. In [10], Lagrange relaxation
was used to determine the scheduling of a microgrid under island
operation mode. The proposed method incorporates a GA to update
the Lagrange multipliers. In [11], an energy management system
which considers the forecast errors of renewable power generators
was suggested. The proposed system employs a dynamic program-
ming based algorithm to optimize the battery schedule. In [12], the
day ahead unit commitment problem was solved using mixed lin-
ear integer programming. In order to handle uncertainty a multi-
scenario stochastic model was adopted. Since many different
objectives may be pursued simultaneously, multi-objective opti-
mization approaches are widely used. In [13], an ant colony algo-
rithm was proposed to optimize the microgrid operation from
the economic and environmental point of view. A multi-objective
energy management system for cost and emission minimization

has been designed in [14]. The suggested system includes a fore-
casting module and a fuzzy logic controlled battery.

Energy storage systems can be used to cope with some of the
technical and economic challenges of microgrid operation. In order
to deal with the uncertainties of non-dispatchable sources, storage
systems can store energy during high availability periods and
redispatch it when there is a power shortage. These devices can
also take advantage of time of use tariffs by purchasing power
from the upstream grid during the off-peak hours and selling it
back to the upstream grid during the peak demand hours.
Other benefits of using storage systems in microgrids are detailed
in [15].

Expert systems based on fuzzy logic are usually employed in
microgrids [14,16,17] in order to control the power output of the
storage devices. Fuzzy logic is a powerful tool for dealing with
imprecision and nonlinearity. In addition, it enables the translation
of qualitative knowledge to quantitative knowledge suitable for
microprocessor implementation and automation [18]. When build-
ing a fuzzy system, one of the most important things is to generate
appropriate fuzzy rules and membership functions. To perform
such a task the aforementioned papers make use of human exper-
tise. However, the construction of a rule base and membership
function set based exclusively on expert knowledge may be a chal-
lenging task that requires time and experience [19–21]. Even so,
good results are not always guaranteed. As an alternative several
authors propose the use of evolutionary algorithms to generate
the rules and membership functions [22–25].

Nomenclature

DT duration of the commitment interval (h)
gd=gc discharging/charging battery efficiency
lij membership function of the j-th fuzzy set of Ai

Ai input/output variable of the expert system
ai; bi; ci coefficients of the fuel cost function of unit i
an

i linguistic value associated with Ai in the n-th rule
Bsc storage capacity of the battery (kW h)
BSRt reserve provided by the battery during period t

(kW)
cij;dij; eij geometrical parameters of lij

Et
b; E

t
s electricity buying/selling price during period t (€/

kW h)
Fi fuel cost function of unit i during period t (€/h)
Fit fitness function
G matrix holding the status of the elements of the

microgrid
K parameter of the fitness function
KOMCi

incremental operation and maintenance cost of unit
i (€/kW h)

MC operating cost of the microgrid
MC mean operating cost of the microgrid
MC minimum operating cost of the microgrid
MFAi membership functions of Ai

MUTi;MDTi minimum up/down time of unit i (h)
mi number of fuzzy sets utilized to characterize Ai

N number of generating units
Nr number of charging/discharging rules
OMCb battery operating and maintenance cost (€/h)
OMCi operating and maintenance cost of unit i (€/h)
P rated power capacity of the battery (kW)
Pt

b; P
t
s power bought/sold from/to the grid during period t

Pt
batt battery power output during period t (kW)

Pt
c;max; P

t
c;min maximum/minimum battery charge rate during

period t (kW)

Pt
d;max; P

t
d;min maximum/minimum battery discharge rate during

period t (kW)
Pmax

Grid maximum allowed power exchange at the PCC (kW)
Pmax

i ; Pmin
i maximum/minimum power output of unit i (kW)

Pt
i power output of unit i during period t (kW)

Pt
L load demand during period t (kW)

Pt
wt power output of wind turbine during period t (kW)

Rc;Rd vector holding the charging/discharging rules
Rt spinning reserve requirement during period t (kW)
rn

c ; r
n
d n-th charging/discharging rule

SCi start-up cost of unit i (€/h)
SOC0; SOCT initial/final state of charge
SOCt state of charge at the end of period t
SOCt

max; SOCt
min maximum/minimum state of charge at the end of

period t
Ton

i ; T
off
i continuously on/off time of unit i (h)

t ¼ 1;2; . . . T commitment interval
Ut

i status of the unit i during period t (1 for ‘‘on’’ and 0
for ‘‘off’’)

List of abbreviations
DG diesel generator
FC fuel cell
FES fuzzy expert system
GA genetic algorithm
GA-MFT genetic algorithm for membership function tuning
GA-SRD genetic algorithm for scheduling and rules determi-

nation
MG microgrid
MT microturbine
PCC point of common coupling
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