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a b s t r a c t

The thermal unit commitment (UC) problem is a large-scale mixed integer quadratic programming
(MIQP), which is difficult to solve efficiently, especially for large-scale instances. This paper presents a
projected reformulation for UC problem. After projecting the power output of unit onto [0,1], a novel
MIQP reformulation, denoted as P-MIQP, can be formed. The obtained P-MIQP is tighter than traditional
MIQP formulation of UC problem. And the reduced problem of P-MIQP, which is eventually solved by
solvers such as CPLEX, is compacter than that of traditional MIQP. In addition, two mixed integer linear
programming (MILP) formulations can be obtained from traditional MIQP and our P-MIQP of UC by
replacing the quadratic terms in the objective functions with a sequence of piece-wise perspective-cuts.
Projected MILP is also tighter and compacter than the traditional MILP due to the same reason of MIQP.
The simulation results for realistic instances that range in size from 10 to 200 units over a scheduling per-
iod of 24 h show that the projected reformulation yields tight and compact mixed integer programming
UC formulations, which are competitive with currently traditional ones.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The unit commitment (UC) problem is an important problem in
the power industry. The objective of the UC problem is to minimize
the total operation cost of the generating units over the scheduled
time horizon while satisfying the demand and reserve require-
ments and all the other constraints of the generating units. In gen-
eral, the UC problem is formulated as a mixed integer nonlinear
programming problem [1] which is nonconvex, and the scale of
this problem make large UC problems challenging to solve.

In this paper, we present a projected reformulation for UC prob-
lem. By projecting the power output of unit onto [0,1], the mixed
integer quadratic programming (MIQP) and mixed integer linear
programming (MILP) formulations of UC problem can be trans-
formed to projected mixed integer programming (MIP) formula-
tions respectively. The obtained projected MIP formulations are
tighter than traditional MIP formulations of UC problem. The

solution logs of MIP solvers show that the reduced problems of
projected MIPs, obtained by the Presolve process of MIP solvers,
often have slightly fewer rows and nonzero elements than the
reduced problems of traditional MIPs. This means that the pro-
jected MIPs are often compacter than the traditional ones in the
sense of reduced problems. Finally, simulation results for 42
instances that range in size from 10 to 200 units for 24 h intervals
show that the projected MIP formulations are very promising for
large-scale UC problems.

The remaining parts of this paper are organized as follows.
Section ‘Literature review’ introduces some related works in
solving UC problems, especially for MIP method. In Section ‘MIP
formulation for UC problem’, the traditional MIP mathematical
formulation of the UC problem is introduced. With the given
formulation, we present our projected MIP formulations in
Section ‘Tight and compact MIP formulations’, which are formed
by projecting Pi,t onto [0,1]. Meanwhile, we explain the tightness
and compactness of projected MIP formulations in this section as
well. The computational results are reported in Section ‘Numerical
results and analysis’ to verify the effectiveness of the proposed
projected formulations. Finally, we conclude the paper in
Section ‘Conclusion’.
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Literature review

Many artificial intelligence (AI) and numerical optimization
methods, most of which are approximations, have been proposed
to solve UC problem. Artificial intelligence (AI) methods include
evolutionary algorithm [2], genetic algorithm [3], particle swarm
optimization [4], artificial neural network [5], simulated annealing
[6], and hybrid methods which combine two or more of the meth-
ods above [7–10]. Numerical optimization methods include prior-
ity list (PL) [11], branch and bound (B&B) [12], Benders
decomposition (BD) [13], outer approximation (OA) [14,15],
dynamic programming (DP) [16], Lagrangian relaxation (LR) [17],
semidefinite programming (SDP) [18], relaxation method [19]. AI
methods can provide fair solutions within reasonable computation
time. However, the quality of the solutions is difficult to guarantee
[1]. As for numerical optimization methods, most of them require
impractical computation time for large-scale systems when high-
quality solutions are needed.

With the significant progresses in the theory of mathematical
programming and improvements in the efficiency of general-pur-
pose MIP solvers [20–25], solving UC problem by using MIP method
is becoming increasingly popular. Historically, LR has been the
method of choice for UC scheduling software used by the power
industry. But, the world’s largest competitive wholesale market,
PJM, has recently replaced LR with MIP to solve the UC-based
scheduling problems [26]. General-purpose MIP solvers can provide
solutions with comparable quality in comparable time. Solvers are
easier to use, and the models are easier to modify to take into
account other new factors. Furthermore, solvers do not only provide
feasible solutions, but also optimality guarantees that prove that
the solutions are indeed accurate to the required precision.

UC problem can be simply formulated as an MIQP and be solved
by solvers directly [27]. Taking into account the perspective func-
tion [28,29], a well-known tool in convex analysis, UC problem can
be reformulated as a tight mixed integer second order cone pro-
gramming (MISOCP). However, [25] proves that directly passing
the MISOCP formulation to the solver is less competitive than
employing piecewise-linear approximations. After approximating
the problem to an MILP formulation, UC problem can be solved
by using MILP solvers. MILP method can often obtain better
solutions than mixed integer nonlinear methods because, nowa-
days, MILP heuristics are more developed than the nonlinear ones

[27]. After upper of lower approximating the quadratic objective
function to be piecewise linear function [30], UC problem can be
solved by using MILP method [22]. One way to achieve a very small
MILP relative optimality gap within a given timeframe is to have a
tight relaxation that approximates the problem better, and this will
result in better lower bounds and higher efficiency in obtaining
optimal integral solutions via a branch-and-cut algorithm [31].
Ref. [21] has recently proposed an MILP best approximated with
gradient-based perspective cuts. Ref. [29] proposes an MILP
approximating the second-order cone constraint with a linear pro-
gramming whose size grows logarithmically with increasing levels
of accuracy. In [23], a sequence of valid inequalities taking three
types of binary variables into account is given to describe a tighter
feasible region of the UC problem. Moving forward, tight and com-
pact MILP UC formulations are provided in [24] incorporating the
startup and shutdown power trajectories of thermal units.

Despite the significant improvements in MIP solving method,
the time required to solve UC problems continues to be a critical
limitation that restricts the size and scope of UC models. For effi-
ciently solving large-scale UC problems, MIP formulations of UC
problems should be further improved.

MIP formulation for UC problem

Objective function and constraints

The objective function of the UC problem is to minimize the
total operation cost FC. It has the form

min FC ¼
XN

i¼1

XT

t¼1

ui;t f i Pi;t
� �

þ Si;t
� �

ð1Þ

where the production cost f i Pi;t
� �

¼ ai þ biPi;t þ ci Pi;t
� �2, and Si,t is

the startup cost.
The constraints of the UC problem are:

(1) Unit generation limits:

ui;tPi 6 Pi;t 6 ui;t
�Pi: ð2Þ

(2) Power balance constraints:

XN

i¼1

Pi;t � PD;t ¼ 0: ð3Þ

Nomenclature

Indices
i index for unit
t index for time period

Constants
N total number of units
T total number of time periods
ai, bi, ci coefficients of the quadratic production cost function of

unit i
Chot,i hot startup cost of unit i
Ccold,i cold startup cost of unit i
Ton,i minimum up time of unit i
Toff,i minimum down time of unit i
Tcold,i cold startup time of unit i
Pi maximum power output of unit i
Pi minimum power output of unit i
PD,t system load demand in period t
Rt spinning reserve requirement in period t

Pup,i ramp up limit of unit i
Pdown,i ramp down limit of unit i
Pstart,i startup ramp limit of unit i
Pshut,i shutdown ramp limit of unit i
ui,0 initial commitment state of unit i (1 if it is online, 0

otherwise)
Ti,0 number of periods unit has been online (+) or offline (�)

prior to the first period of the time span (end of period
0)

Variables
ui,t schedule of unit i in period t, binary variable that is

equal to 1 if unit i is online in period t and 0 otherwise
si,t startup status of unit i in period t, which takes the value

of 1 if the unit starts up in hour t and 0 otherwise
Pi,t power output of unit i in period t
~Pi;t projected variable of Pi,t which belongs to [0,1], describ-

ing the location of in ½Pi; Pi�
Si,t startup cost of unit i in period t
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