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a b s t r a c t

This paper proposes a predictor–corrector primal–dual modified log-barrier interior–exterior point
method with global convergence and cubic fitting strategies for solving the Reactive Optimal Power Flow
(ROPF) problem. The interior–exterior approach is a variant of the primal–dual nonlinear rescaling
method, recently proposed. The application of the global convergence strategy produces only descent
directions, even if the optimization problem is non-linear and non-convex. The application of a cubic
fitting strategy for modified log-barrier functions preserve the continuity and also the first and
second-order derivatives of the logarithm near the boundary of the feasible set. Some updating rules
for the Lagrange multiplier estimates are theoretically and numerically evaluated. Numerical tests and
comparisons with classical interior point methods, involving the electrical systems of 3, 9, IEEE-14,
IEEE-30, IEEE-57, IEEE-118, IEEE-162 and IEEE-300 buses, are performed, which demonstrate the
robustness and efficiency of the method.

� 2014 Elsevier Ltd. All rights reserved.

Introduction

The Optimal Power Flow (OPF) is a nonlinear, non-convex and
large scale optimization problem involving both continuous and
discrete variables [34]. The purpose of the OPF is to determine
the best operational point for the electric system through the
optimization of an objective function representing a certain system
performance, while satisfying operational constraints. Depending
on the system performance and on the constraints adopted, many
sub-classes of OPF problems may be defined. Historically, the basic
subclasses described in [18] involve active and reactive optimal
power flow problems. The active OPF (AOPF) is concerned with
the calculation of active power controls, such as active generation
and angles for phase shifter transformers, by means of the minimi-
zation of the generation costs. Examples of AOPF formulation
involve some sub problems, such as: economic dispatch [31,5,7],
predispatch [32], and unit commitment [36]. The reactive OPF
(ROPF) is concerned with the calculation of reactive power con-
trols, such as voltage magnitudes in controllable buses, transforms

tap ratios, and capacitor/reactor banks, by means of the minimization
of some reactive criteria, such as: transmissions system losses and
voltage profile deviation. Finally, the active-reactive OPF (AROPF)
approaches attempt to optimize both active and reactive powers
jointly.

As the solution techniques used to solve the OPF problem
evolved, new OPF formulations were also proposed that incorpo-
rate more realistic aspects of the problem. In such a context, we
may point out the security-constrained OPF (SCOPF) and the
probabilistic OPF (POPF). The SCOPF is an extension to the OPF
problem, which takes into account constraints arising from the
operation of the system under a set of postulated contingencies
[34,14]. The POPF is used whenever uncertainties in some of the
parameters of the problem, such as loads and generation, must
be represented in the OPF formulation [46,3,16].

The algorithms adopted for solving these more realistic OPF
formulations generally necessitate solving a huge amount of
OPF sub-problems. Hence, these sub-problems demand robust
local search procedures with good computational properties,
such as: good matrix conditioning, small number of cycles, and
good accuracy. In this paper, we compare two primal–dual
predictor-corrector algorithms having such characteristics for
solving the ROPF problem, namely: the interior-point method
described in [44] and the modified log-barrier interior–exterior
point method here proposed.
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The first attempt for solving the general ROPF model was pro-
posed by [15], who solved it by using KKT conditions and a
Gauss–Seidel method. Since then, numerous researchers have pro-
posed a variety of methods for its solution. These researchers
include [18], who used the reduced-gradient technique associated
with a Newton–Raphson method; [38], using the penalty function
method; [41], using a decoupled Newton–Raphson method; [17],
who used the augmented Lagrangian function;[22,44], using the
interior-point method (IPM); [1], by applying the modified bar-
rier-augmented Lagrangian function; [6], using an approach of
the log-barrier augmented Lagrangian function; [42], using meth-
ods involving augmented Lagrangian function and interior-point
trust region; [40], using the modified barrier Lagrangian
function; [45], who used a decomposition–coordination
interior-point method. Recently, [39] solved the ROPF including
discrete variables using filtering methods and a penalty function.
Some convexity properties of the dual problem associated with
the OPF were discussed in [25]. The authors also provide necessary
and sufficient condition to guarantee the existence of zero-duality
gap for the equivalent form of the OPF problem. These results are
conceptually important since the authors have shown that the
standard IEEE benchmark systems with 14, 30, 57, 118, and 300
buses satisfy these necessary and sufficient conditions. In other
words, these practical systems can all be convexified via the new
formulation proposed in [25].

Recent literature regarding the ROPF solution technique also
includes numerical experiences with evolution algorithms (EA)
such as: the evolutionary algorithm proposed in [37], that uses
the concept of incremental power flow model based on sensitivi-
ties, which reduces substantially the number of power flow evalu-
ations, resulting in solution speed up; the two stage initialization
algorithm described in [4] that does not use the mutation opera-
tion and calculates the solution with less number of generations;
the nondominated sorting multi objective gravitational search
algorithm described in [11] for solving different ROPF problems;
the Evolutionary Particle Swarm Optimization approach described
in [16], that investigates the effects of wind generation on power
system operation and planning by means of an OPF model.
Although the experiences with EA for solving the ROPF problem
have been successfully described in the literature, the results
presented are generally restricted to small or medium size power
systems. In contrast, as discussed in [34], the algorithms developed
using the concepts of IPM are capable of solving large scale ROPF
problems. However, in recent studies with IPM described in [13]
the authors underline the need to improve the reliability of IPM
codes for solving very difficult OPF problems. Another important
drawback of EA approaches is their inability to verify the optimal-
ity of the solutions obtained. Hence, one never knows whether an
optimal solution has really been reached.

This paper proposes a predictor–corrector primal–dual
Modified Log-Barrier Interior–Exterior Point Method with Global
Convergence and Cubic Fitting strategies (MLBIEPMGC–CF) to
solve the ROPF. The modified barrier function proposed by [35]
can be considered an interior augmented Lagrangian function. Con-
trary to the classical log-barrier function introduced by [20], the
modified barrier function allows for the existence of first and
second order derivatives at boundary points of the feasible set,
due to its finite relaxation property in this region. The global
convergence strategy adopted by the MLBIEPMGC–CF involves
the use of rank correction [33] on the Hessian matrix [9] associated
with the modified log-barrier Lagrangian function, using a variant
of the Levenberg–Marquardt method. The purpose of this correc-
tion is to make the matrix positive definite in all the cycles of
the method, which ensures that the search for local minima or
the global minimum is successful within the feasible set, thereby
preventing the poor conditioning of the Hessian matrix, which

has been observed in the literature [40], particularly for points at
the boundary of the feasible set.

In the MLBIEPMGC–CF, we adopt a cubic polynomial fitted to
the modified barrier function at a predetermined point in the
relaxed region. This polynomial allows the modified log-barrier
Lagrangian function to be defined for points beyond and close to
the boundary of this finite region. The adjustment is made so that
the values of the polynomial function and its first and second order
derivatives coincide, respectively, with the values associated to the
modified barrier function. The advantages of fitting a cubic polyno-
mial rather than using a quadratic polynomial, as shown by [29],
are that both the curvature and the strict convexity of the modified
barrier function are preserved at a predetermined point.

In what concerns the potential for solving ROPF problems, our
method has the following contributions: (i) the KKT conditions
are fully satisfied with great precision, and zero duality gap; (ii)
the global convergence strategy assures primal steepest descent
directions in all iteration which, in turn, assures that minimum
rather that maximum optimal solutions are always found; (iii)
ill-conditioning problems associated with the Hessian matrix are
also substantially minimized by means of the global convergence
strategy; and (iv) the strategy for updating the Lagrange multiplier
estimates reduces the number of iterations for convergence, as
shown in the results.

This paper is structured as follows. Section ‘The reactive optimal
power flow problem’ describes the ROPF problem; section ‘Interior
and exterior point methods’ briefly describes the main concepts
related to interior and exterior point methods, in order to put the
method proposed into perspective. Section ‘The primal–dual
modified log-barrier interior–exterior point method’ presents the
proposed predictor and corrector procedures in the context of the
predictor–corrector primal–dual Modified Log-Barrier Interior
Exterior Point Method (MLBIEPM); section ‘The global convergence
strategy’ describes the global convergence strategy; section ‘Cubic
fitting strategy’ discusses the proposed cubic fitting strategy; sec-
tion ‘Updating of the barrier parameter’ describes the update of
the barrier parameter; section ‘Algorithm of the MLBIEPMGC–CF
method’ presents the algorithm of the MLBIEPMGC–CF method;
section ‘Numerical results’ describes the numerical results, and
lastly, section ‘Conclusions’ outlines our main conclusions.

The reactive optimal power flow problem

The purpose of the ROPF problem is to calculate reactive power
controls of the system that minimize an optimization criterion,
such as transmission losses and optimization of the voltage profile,
among others, taking into account the main physical and opera-
tional constraints of the transmission system. In this work, we
chose to minimize transmission losses. Mathematically, the
problem is formulated as shown in (1):

Min f xð Þ
s:t:

g xð Þ ¼ 0
u1 6 h xð Þ 6 u2

l1 6 x 6 l2;

8>>>>>><
>>>>>>:

ð1Þ

where

� x ¼ V; c½ �: is the dimensional vector of voltage magnitude and
angles, respectively;
� l1 and l2: are the vectors of the minimum and maximum limits

of x, respectively;
� f xð Þ: is the function that represents the sum of active power

losses in transmission;
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