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a b s t r a c t

This paper proposes an enhanced cross-entropy (ECE) method to solve dynamic economic dispatch (DED)
problem with valve-point effects. The cross-entropy (CE) method, originated from an adaptive variance
minimization algorithm for estimating probabilities of rare events, is a generic approach to combinatorial
and multi-extremal optimization. Exploration capability of CE algorithm is enhanced in this paper by
using chaotic sequence and the resultant ECE is applied to DED with valve-point effects. The performance
of the proposed ECE method is rigorously tested for optimality, convergence, robustness and computa-
tional efficiency on a 10-unit test system. Additional test cases with different load patterns and increased
number of generators are also solved by ECE. Numerical results show that the proposed ECE approach
finds high-quality solutions reliably with faster convergence. It outperforms CE and all the previous
approaches.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Power utilities are expected to generate electrical power at
minimum cost within the generator and system limits. Economic
dispatch (ED) plays a major role in this aspect [1]. Plant operators,
to avoid life- shortening of the turbines and boilers, try to keep
thermal stress on the equipments within the safe limits. This
mechanical constraint is usually transformed into a limit on the
rate of change of the electrical output of generators. Such ramp-
rate constraints link the generator operation in two consecutive
time intervals. ED which includes such inter-temporal dynamic
connection is termed as dynamic ED (DED) [2]. The DED has been
recognized as not only a more accurate formulation of ED, but also
a most challenging optimization problem in power system opera-
tion. The DED solution provides the optimal operating trajectories
based on the forecasts of system load demand profile. Generating
units are then driven along these trajectories by plant controllers
to have the lowest operating costs.

Accurate modeling with the inclusion of valve-point loading ef-
fects makes the solution space of DED nonconvex with many local
minima. Therefore, DED becomes a highly nonlinear and noncon-
vex optimization problem, which cannot be solved by traditional
techniques [3]. Dynamic programming (DP) can solve such type
of problems [4], but it suffers from the curse of dimensionality.
In recent years, many purebred and hybrid metaheuristic algo-
rithms have been proposed to solve DED with valve-point effects.

Mathematical properties such as differentiability, convexity, and
linearity are of no concern for these algorithms. Modified differen-
tial evolution (MDE) [5] and improved particle swarm optimization
(IPSO) [6] are the purebred algorithms that have been applied to
DED.

Hybrid algorithms (combination of metaheuristic algorithms
and local search procedures i.e. combination of exploration and
fine-tuning) have provided significant results for DED with valve-
point effects. The constituent algorithms of hybrid methods opti-
mize the problem during different phases of optimization and they
are integrated either sequentially or cyclically. Hybrid algorithms
like evolutionary programming–sequential quadratic program-
ming (EP–SQP) [7] and improved differential evolution (IDE)-Shor’s
r-algorithm [8] are examples for sequentially integrated hybrid
algorithms, which have been applied to solve DED with valve-point
effects. In these algorithms, EP/IDE is used as a base level search;
then the fine-tuning is carried out by SQP/Shor’s r-algorithm. Even
though sequential integration provides better results, it has some
drawbacks. First, deciding the point of integration of two algo-
rithms, which has to be specified by the user, is very difficult. At
the integration point, there is no guarantee of the favorable state
i.e. fine-tuning may be invoked closer to a local-optimum. Sec-
ondly, the base algorithm may allow the better regions which are
encountered in the earlier iteration stages without fine-tuning.

To ensure fine-tuning at all the stages of optimization, the cycli-
cal hybrid algorithms invoke a deterministic local search proce-
dure whenever the primary heuristic algorithm finds a better
solution. Examples of such hybrids are modified hybrid EP–SQP
(MHEP–SQP) [9] and deterministically guided PSO (DGPSO-A
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hybrid of PSO and SQP) [10]. The SQP fine-tunes the solution ob-
tained by EP/PSO algorithm. Then the primary algorithm i.e. EP/
PSO takes the solution of SQP as a guide and optimizes the problem
further. Since SQP is invoked during the favorable state there are
more possibilities to get better solution. Therefore, the cyclic inte-
gration used in MHEP–SQP and DGPSO is better than sequential
integration. However, the cyclical hybrid algorithms consume large
CPU time due to the often invoking of SQP. Another weakness is
that SQP may wrongly guide the heuristic algorithm towards a lo-
cal-optimum. Once the SQP finds a better solution (may be a local-
optimum), the primary algorithm is attracted towards it.

The preceding discussion reveals that there is a need of simple
yet powerful algorithms to solve DED with valve-point effects. In
this context, this paper proposes an enhanced cross-entropy (ECE)
method to solve the DED problem with valve-point effects. Cross-
entropy (CE), proposed by Rubinstein [11,12], is an innovative
metaheuristic approach. CE was originally proposed as an adaptive
variance minimization algorithm for estimating rare event proba-
bilities. Later, it has been applied to complex combinatorial optimi-
zation problems [13–19]. In this paper, chaotic sequence is used to
enhance the performance of CE and the resultant ECE algorithm is
applied to solve DED with valve-point effects. Recent research trend
is adopting chaotic sequences instead of random ones and very
promising results have been obtained in many engineering applica-
tions [20]. The application of chaotic sequences in CE results in a
powerful strategy, which has improved global searching ability
and capacity to escape from local minima.

To validate the proposed ECE method in solving DED with
valve-point effects, it is tested on a system of 10 units with 24 h
scheduling span. Also, ECE has been tested with different load pat-
terns and increased number of generators. Performance compari-
sons with existing methods on solution optimality, consistency
and execution time are presented. Test results confirm that the
proposed ECE is more consistent in giving lower generation cost
with shorter execution time than previous approaches. ECE, also,
outperforms CE in solving DED.

2. DED problem formulation

DED aims in economically scheduling the online generators
over the dispatch horizon such that the forecasted load profile is
met. While doing so, system and generator constraints must be sat-
isfied. Accordingly, DED can be formulated as an optimization
problem.

2.1. Objective function

The objective of DED is to minimize the fuel cost of all the on-
line generators over the given dispatch horizon. Mathematically,
it can be stated as:

minimize FT ¼
XT

t¼1

XN

i¼1

FiðPi;tÞ ð1Þ

where FT is total fuel cost or generation cost ($); N is the number of
generating units; T is the number of intervals in the scheduling
horizon; Pi,t is the real power generation of generating unit i during
subinterval t (MW) and Fi() is the fuel-cost function of generating
unit i. To improve the accuracy of DED formulation, the valve-point
effect (ripple like effect in the heat rate curve due to sequential
valve opening process) is included by superimposing the basic qua-
dratic fuel-cost characteristics with the rectified sinusoidal compo-
nent as follows:

FiðPi;tÞ ¼ aiP
2
i;t þ biPi;t þ ci þ jei sinðfiðPmin

i � Pi;tÞÞjð$=hÞ ð2Þ

where ai, bi, ci are the cost coefficients and ei, fi are the valve-point
effect coefficients of generator i; Pmin

i and Pmax
i are the minimum

and maximum power generation limits of generator i, respectively.

2.2. Constraints

(a) Demand-supply balance

XN

i¼1

Pi;t ¼ PDt þ PLt ð3Þ

where PDt is the total load in the system during subinterval t (MW)
and PLt is the network loss during subinterval t (MW), which is
determined using B-matrix loss formula [1].

PLt ¼
XN

i¼1

XN

j¼1

Pi;tBijPj;t þ
XN

i¼1

B0iPi;t þ B00 ð4Þ

where Bij is the element of loss coefficient square matrix of size N;
B0i is the element of loss coefficient vector of length N and B00 is the
loss coefficient constant.

(b) Real power generation limits

Pmin
i � Pi;t � Pmax

i ð5Þ

Nomenclature

i index for generators; it varies from 1 to N
t index for time intervals; it varies from 1 to T
j index for possible solutions; it varies from 1 to M
k iteration count
kmax maximum iteration count
Sample sample matrix
Pj jth sub-matrix of Sample (jth possible power generation

schedule)
Pj

i;t i, tth element (power generation of generator i during
interval t) of Pj

M number of individuals (population size or sample size)
vi,t parameter vector for generator i during interval t
li,t/ri,t mean/std of all the M power generations of generator i

during interval t
PFT(Pj) penalized objective function value for Pj

Fbest
T ðkÞ best objective function (generation cost) value at itera-

tion k

Pbest (k) best power generation schedule at iteration k
Fopt

T optimum objective function value
Popt optimum power generation schedule
q rarity parameter
a/b smoothing parameter for mean/std
b(k) value of b at iteration k
z(k) value of the chaotic sequence at iteration k
bz(k) value of the chaotic sequence modulated b at iteration k
Pelites elite set of power generation schedule
~vi;t estimated vi,t
~li;t=~ri;t estimated li,t/ri,t

Pelites
i;t i, tth element of the all the elites

v parameter vector consists of mean (l) and std (r)
~v estimated v consists of estimated mean (~l) and esti-

mated std (~r)
f(.;v) pdf with parameter vector v
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