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a b s t r a c t

In electrical distribution system optimisation, the presence of multiple conflicting objectives is effectively
addressed by using Pareto front analysis. This paper deals with optimal reconfiguration considering net-
work losses and energy not supplied as multi-objectives. A set of original contributions are provided with
reference to the construction and updating of the best-known Pareto front using a genetic algorithm-
based solver. The crossover operator is extended to address multi-objective solutions. The mutation oper-
ator is extended to handle a broader number of cases. Multi-objective solution ranking is applied by
resorting to multi criteria decision making methods during the creation of the offsprings in the crossover
operator, as well as to provide an automatic support for the decision maker to identify the preferable
solution in the final Pareto front. The proposed approach is applied on two reference test networks, for
which the complete Pareto front is calculated from the entire set of multi-objective solutions. The
resulting best-known Pareto front is compared with the complete Pareto front using a metric based on
geometrical considerations. This comparison framework is helpful to assess the performance of the
multi-objective optimisation solvers.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Distribution system optimisation can be addressed in different
contexts and with different objective functions. A general distinc-
tion considers distribution system optimal reconfiguration in
normal and emergency conditions, and distribution system optimi-
sation in a planning framework (operational planning at constant
load and expansion planning at variable load).

The optimal distribution system reconfiguration problem has
been first solved in [1] by considering loss minimisation, using a
branch and bound technique in which, starting from the initial net-
work with closed branches, the redundant branches are open until
reaching the radial configuration. A refined version of this tech-
nique has been proposed in [2,3]. A concept successfully applied
is the open-close branch exchange introduced in [4], consisting
of starting from a radial configuration, closing an open branch,
identifying the loop formed and opening one of the branches
belonging to the loop to restore a radial configuration. This concept
served to develop an effective deterministic method called itera-
tive improvement [5], in which the open-close branch exchange
is performed iteratively, updating the radial configuration to the

one producing the best configuration found so far, until stopping
into a (local) minimum.

The largest part of the literature papers has considered a single
objective function (the reduction of the line losses), taking into ac-
count a given set of loads, with one or a few loading levels and no
variation in time of the loads. Various methods based on meta-
heuristics have been applied to optimal distribution system recon-
figuration, starting from the early applications of simulated
annealing, genetic algorithms and tabu search. Review indications
can be found for instance in [6–10]. A number of recent contribu-
tions have addressed the application of different meta-heuristics to
the minimum loss reconfiguration problem. A full review of the
optimisation formulations and solution techniques is outside the
scope of this paper. Some exemplificative references for these
meta-heuristics include ant colony [11–13], genetic algorithms
(GA) with matroid theory [14], sequential GA [15], improved adap-
tive GA and branch exchange [16], hybrid differential evolution
[17], plant growth [18], integer coded particle swarm optimisation
[19], bacterial foraging [20], modified honey bee mating [21], and
harmony search [22]. In addition, some papers have used methods
like optimal power flow with Benders decomposition [23] and
mixed-integer convex programming [24].

The multi-objective framework has been introduced in [25] by
considering a trade-off among conflicting objectives such as losses
and reliability [26]. In this framework, multi-objective optimal
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reconfiguration has been the subject of various developments in
recent years. Different objectives have been considered in addition
to losses, such as load balancing [27–32], voltage deviations
[27,30,33–35], number of switching actions [36–38], reliability
indicators [25,38–42], and emissions [34,35].

The presence of multiple objectives raises the issue of how to
consider them simultaneously. The main issues are the different
units of the individual objectives, as well as the possible
different orders of magnitude of the numerical values of the sin-
gle objectives. In order to deal with these aspects, [25] consid-
ered the weighted sum of per-unitised objectives. The
determination of the normalising factors depends on the features
of the individual objectives and as such is not an easy task. In
[43] the Grey correlation analysis has been used with the aim
of avoiding the setting up of problem-dependent and network-
dependent maximum/minimum limits on the variables describ-
ing the individual objectives, through the identification of prob-
lem-independent superior and inferior solutions for each
objective.

Another set of applications used fuzzy logic-based approaches,
requiring the definition of the minimum and maximum values of
the membership functions, with user’s dependent selection of
these values [27,30,32,40,44,45]. In the hypothesis of minimising
the objective function, considering the value L0 of the objective
calculated in the initial network configuration, the maximum
value of the membership function is generally defined as
xmax

L = L0/L0 = 1. Furthermore, the minimum value of the member-
ship function has to be defined by using an objective function Lmin

conceptually associated with the minimum value of the specific
objective. However, the minimum value is not known in advance.
For this purpose, the literature provides some guidelines on how
to set up the value Lmin for different types of objectives, typically
as the minimum value of the objective under which the solution
is considered to be acceptable [27,44]. This choice defines the
minimum value xmin

L = Lmin/L0 to be used for constructing the
membership function lL for the objective L, that is:

lL ¼

1 for x 6 xmin
L

xmax
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xmax
L
�xmin

L
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L < x < xmax
L

0 for x P xmax
L
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>>:
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The optimisation is then formulated either as the weighted sum
of the fuzzy membership functions [27,23,36], or with the applica-
tion of the max–min principle [44], or using a specific maximum
geometric mean operator to represent the degree of overall fuzzy
satisfaction [30]. In other cases (e.g., [40]), the membership
function lLi ¼ Li= max

K¼1;...;dimðLÞ
fLkg contains only the maximum value

of the objective functions calculated for the solutions currently
considered, and the max–min principle is adopted to find the best
configuration.

A different view on multi-objective optimisation takes into ac-
count the presence of multiple conflicting objectives. In this case,
a solution is non-dominated when no other solution exists with
better values for all the individual objectives. The Pareto front is
the set containing the non-dominated solutions, interpreted as
compromise solutions for the problem under analysis.

The calculation of the compromise solutions can be carried out
with different techniques, among which:

� the weighted sumof the individual objectives, for convexPareto
fronts;
� the e-constrainedmethod, that considers an individual objective

as the target to be optimised and sets for all the other objectives
a limit expressed by a threshold e, then progressively reduces
the threshold and upgrades the set of non-dominated solutions;

this method has been applied to optimal distribution system
reconfiguration in [46];
� the direct Pareto front construction through heuristic

approaches, with an iterative process; some examples are the
Strength Pareto Evolutionary Approach, Pareto Archived Evolu-
tion Strategy, Non-dominated Sorting Genetic Algorithm II
(NSGA II) [47–49], Jumping Genes Evolutionary Multi-Objective
Optimisation [50], Multi-Objective Particle Swarm Optimisation
(MOPSO) [51] and Evolutionary Particle Swarm Optimisation
(MEPSO) [52], and Multi-Objective Tabu Search [53].

The main advantage for using the Pareto front approach is that
there is no need for setting up normalising factors or minimum/
maximum limits to deal with non-commensurable objectives.
The various objectives are orthogonal with each other and the
assessment of the non-dominated solutions is totally independent
of the units associated with each individual objective. The Pareto
analysis is then suitable for addressing problems whose conflicting
solutions cannot be assessed by using a single criterion.

Some applications of the Pareto analysis to optimal distribution
system reconfiguration have been reported in the recent literature.
In [39,42] the objective functions considered are losses and reli-
ability indices. The Pareto front solutions are found in [39] by using
a micro-genetic algorithm, and in [42] by using an improved shuf-
fled frog leaping algorithm, in which the compromise solutions are
stored in a repository, and a fuzzy clustering technique is applied
to limit the size of the repository. In both papers there is no com-
parison among the Pareto front solutions obtained.

The papers [34,54] address the optimal distribution system
reconfiguration together with the sizing of a hybrid (photovol-
taic/wind turbine/fuel cell) energy system. In [54] the objectives
are the losses, the voltage stability index, the cost of energy gener-
ated by distributed generators (DGs) and purchased from the grid,
and the total emissions produced by DGs and the grid. The multi-
objective artificial bee colony (MOABC) algorithm is used to create
the Pareto front. An archive of non-dominated solutions is stored at
each iteration, limiting the size of the archive by using the crowd-
ing distance operator [47] to eliminate some points by preserving
diversity of the solutions in the archive. There is no comparison
among the Pareto front solutions. In [34] the objectives are the
losses, the voltage deviation, the total energy production cost by
the grid and DG, and the total emissions. A multi-objective modi-
fied honey bee mating optimization (MHBMO) algorithm is used
to generate the Pareto front. The non-dominated solutions are
stored in a repository, and the size of the repository is limited by
adopting a fuzzy clustering technique. A further fuzzy-based
mechanism is used to find the best compromise solution in the Par-
eto solutions set. For this purpose, the fuzzy membership functions
are calculated for all the solutions and for all the objectives. The
best compromise solution is the one for which the sum of the
membership functions referring to that solution is the highest.

This paper refers to the direct construction and iterative updat-
ing of the best-known Pareto front (i.e., the evolving approximation
of the complete Pareto front). The genetic operators used in the
NSGA-II method have been adapted to solve a number of critical
aspects of distribution system optimisation, and to take into ac-
count the multi-objective nature of the solutions generated during
the iterative process. In particular, during the local improvement
(introduced in the single-objective framework in [55], see details
in Section 4) it is required to make choices among the solutions ob-
tained. In the extension of the local improvement to the multi-
objective problem, the incorporation of an appropriate method
for ranking a set of multi-objective solutions is necessary.

At the end of the entire iterative process, an acceptable best-
known Pareto front has to be created, but it is fundamental to both
assess the ‘‘quality’’ of the Pareto front obtained and rank the
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