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a b s t r a c t

This paper proposes a simple and efficient power flow method to calculate, in an interval manner, the
main variables corresponding to the maximum loading point, under load data uncertainties. The resulting
interval nonlinear system of equations is solved using Krawczyk method. The proposed methodology is
implemented in the Matlab environment using the Intlab toolbox. Results are compared with those
obtainable by Monte Carlo simulations. IEEE 30 bus system and a South-southeastern Brazilian network
are used to validate the proposed methodology.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Power flow [1,2] is the most frequently performed study in elec-
tric power systems, and deals with the calculation of voltages and
line flows, in a large sparse electrical network, for a given load and
generation schedule. The conventional power flow solution com-
prises power equations expressed in terms of polar or rectangular
voltage coordinates. Over the last years, the current injection power
flow has been applied to different electric power system areas and
remarkable results have been published in literature [3–6].

Voltage stability has been one of the major concerns of power
system operators and planners for the last years. The continuous
load increase, allied to the lack of investments in transmission
and generation, has led systems to operate very close to their lim-
its. Voltage stability has been a subject widely investigated [7]. Its
static analysis can be assessed through continuation power flow
and point of collapse methods.

The voltage profile is obtained through successive power flow
solutions by simulating load changes. However, the voltage profile
cannot be traced completely, by using only the conventional power
flow, because the Jacobian matrix becomes singular at the maxi-
mum loading point (MLP). The continuation method is applied to
power flow equations to overcome this drawback. A brief history

is presented next. In [8], a mathematical model for the continua-
tion power flow using either additional load change, or voltage
magnitude, as continuation parameters is presented. A tool for
evaluating nonlinear effects on power system states due to branch
admittance/impedance variations is presented in [9]. A continua-
tion three-phase power flow is proposed in [10]. In [11], a fuzzy
continuation power flow is developed with the objective of simul-
taneously handling uncertainties in load parameters and bus injec-
tions parameters.

The objective of point of collapse method is to iteratively calcu-
late the maximum loading point of electric power systems without
tracing the continuation curves. A brief history is presented next.
Ref. [12] describes an extension of the point of collapse developed
for ac systems studies to the determination of saddle-node bifurca-
tions in power systems, including high voltage direct current trans-
mission. Ref. [13] describes the implementation of both point of
collapse and continuation methods for computation of voltage col-
lapse in large ac/dc systems. Ref. [14] calculates the maximum loa-
dability using interior point nonlinear optimization method.

On the other hand, input data are subject to uncertainty. For in-
stance, all loads are provided by measurement devices which are
frequently inaccurate. One of the approaches used for taking into
account the effects of errors on numerical computation is the inter-
val analysis. It is based on interval operations including interval
arithmetic. The technique calculates the interval between the
upper and lower bounds regarding variables under uncertainty.
To yield solutions in a mathematical sense and to express the var-
iable under uncertainty as an interval variable are the main
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advantages. The main limitation is sometimes to overestimate the
interval between the upper and lower bounds. Therefore, loads and
other parameters can be characterized not by a single number, but
rather by a range of real values or a real interval [15–17]. Other ap-
proaches for dealing with uncertainties are the probabilistic power
flow [18–21] and the fuzzy power flow [22–25].

Ref. [26] presents a model of power flow under uncertainty by
incorporating interval arithmetic into the current injection formu-
lation. No control devices are considered in the power flow prob-
lem and the interval solutions yielded by methodology refer to
the nominal operating point. The main objective of this paper is
to extend the methodology developed in [26] in order to calculate
in an interval form, under load data uncertainty, not only the max-
imum loading point, but also the main variables corresponding to
this point, such as voltage magnitudes, phase angles, active and
reactive power generations, active and reactive line flows and
losses. Reactive power generation limits at PV buses and voltage
magnitudes limits at PQ buses are considered.

The notations adopted in the paper are the conventional ones
whenever possible. Matrices are shown in bold. The over scripts
d and i refer to deterministic and interval quantities, respectively.

2. Brief review on interval technique [26]

An interval number [x1, x2] is the set of real numbers x such that
x1 6 x 6 x2. x1 is the infimum and x2 is the supremum. The interval
X is defined by X ¼ ½x1; x2� ¼ f~x 2 Rjx1 6 ~x 6 x2g.

One of the most used approaches for solving a set of nonlinear
equations is the Krawczyk method. Let f be a nonlinear function
such that f(x) = 0. The Krawczyk operator is given by

KðxðhÞ;XðhÞÞ ¼ xðhÞ � Cf ðxðhÞÞ þ ½I� CJðXðhÞÞ�ðXðhÞ � xðhÞÞ ð1Þ

where x is the midpoint of interval X, J the Jacobian matrix, I the
identity matrix, C the preconditioning matrix given by the midpoint
inverse of J(X) and h is the iteration number.

The interval solution is given by.

Xðhþ1Þ ¼ XðhÞ \ KðxðhÞ;XðhÞÞ ð2Þ

Eq. (2) means that the interval Krawczyk method provides the solu-
tion through the intersection of two interval sets. The iterative pro-
cess converges when jXðhþ1Þ � XðhÞj 6 I.

Let X = [x1, x2] and Y = [y1, y2] be two intervals. The interval
operations in Eqs. (1) and (2) are given by

X þ Y ¼ ½x1 þ y1; x2 þ y2� ð3Þ

X � Y ¼ ½x1 � y2; x2 � y1� ð4Þ

X � Y ¼ ½minðx1y1; x1y2; x2y1; x2y2Þ;maxðx1y1; x1y2; x2y1; x2y2Þ� ð5Þ

X
Y
¼ min

x1

y1
;
x1

y2
;
x2

y1
;
x2

y2

� �
;max

x1

y1
;
x1

y2
;
x2

y1
;
x2

y2

� �� �
ð6Þ

X \ Y ¼ ½maxfx1; y1g; minfx2; y2g�;
if maxfx1; y1g < minfx2; y2g
if minfx2; y2g > maxfx1; y1g
then X \ Y ¼ 0

ð7Þ

3. Interval power flow solution at maximum loading point –
proposed method

3.1. Initial Considerations

This paper proposes a new methodology in order to calculate in
an interval form, under load data uncertainty, the maximum load-
ing point and the main variables corresponding to this point, such

as voltage magnitudes, phase angles, active and reactive power
generations, active and reactive line flows and losses. The power
flow problem is modeled through current injection equations writ-
ten in rectangular voltage coordinates.

3.2. Solution methodology

The interval power flow solution at MLP, denoted by IPFS-MLP,
can be summarized in the following steps:

Step 1: Run the deterministic PSAT (Power System Analysis
Toolbox) program [27] to calculate the MLP and all determinis-
tic variables associated with this point. The configurations
adopted to run the continuation power flow in PSAT program
are: corrector step tolerance = 10�5, flow tolerance = 0.01; step
size control = 0.005 and maximum number of points = 5000.
Besides, representation of control devices is also activated.
Step 2: Active and reactive load variations, in the base case, at a
generic bus k are given by

Pi
dk
¼ ½Pd

dk
ð1� aPk

Þ; Pd
dk
ð1þ aPk

Þ� ð8Þ

Q i
dk
¼ ½Qd

dk
ð1� aQk

Þ;Qd
dk
ð1þ aQk

Þ� ð9Þ

where aPk
and aQk

are factors which denote active and reactive load
variations.

Step 3: A new variable c is employed to simulate load and gen-
eration changes. Therefore, the real and imaginary components
of interval current mismatches [26] must be calculated by con-
sidering this extra variable. Thus

DIi
rk
¼ Id

rk
�
ðPi

gk
� Pi

dk
Þð1þ cdÞVd

rk
þ ðQi

gk
� Q i

dk
Þð1þ cdÞVd

mk

ðVd
kÞ

2

ð10Þ

DIi
mk
¼ Id

mk
�
ðPi

gk
� Pi

dk
Þð1þ cdÞVd

mk
� ðQ i

gk
� Q i

dk
Þð1þ cdÞVd

rk

ðVd
kÞ

2

ð11Þ

where Vk is the voltage magnitude at MLP; DIrk
þ jDImk

is the com-
plex current mismatch at MLP; Pgk

þ jQ gk
is the generated complex

power in the base case; the under script k denotes the bus. Current
mismatches are calculated only once.

Step 4: Interval voltages are initialized by using the determinis-
tic voltage profile at MLP as midpoint. In order to improve the
interval initial conditions, the radius is given by

DVi
r

DVi
m

" #
¼ ðJdÞ

�1 DIi
m

DIi
r

" #
ð12Þ

Therefore

Vi
rk
¼ Vd

rk
þ DVi

rk
ð13Þ

Vi
mk
¼ Vd

mk
þ DVi

mk
ð14Þ

Since the deterministic current injection Jacobian matrix in Eq.
(12), denoted by Jd, is singular at MLP, the strategy adopted in this
paper is to calculate this matrix at a point close to MLP. For exam-
ple, if the PSAT program requires n points to calculate the MLP, then
it is evaluated by using all power flow variables corresponding to
the (n � 2) point.
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