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a b s t r a c t

A robust technique for online estimation of the fundamental frequency of both balanced and unbalanced
three-phase power systems is proposed. This is achieved by introducing a widely linear least mean phase
(WL-LMP) frequency estimator, based on Clarke’s transformation and widely linear complex domain
modelling. The proposed method makes use of the full second-order information within the complex-val-
ued system voltage, making it possible to eliminate otherwise unavoidable oscillations in frequency
estimation. In this way, the WL-LMP inherits the advantages of the phase-only approach, such as its high
angle estimation accuracy and immunity to voltage and harmonics variations, while accounting for the
noncircularity of Clarke’s voltage in unbalanced conditions. Simulations over a range of unbalanced
conditions, including those caused by voltage sags and higher order harmonics, and case studies for
real-world unbalanced power systems support the analysis.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Frequency is a key variable in power quality control, as its fluc-
tuations reflect the dynamic balance between power generation
and load consumption [1]. The need for its accurate estimation is
even more highlighted through current trends for distributed gen-
eration, which require perfect system synchrony is needed to con-
nect microgrids and regulate islanding. In those scenarios, some
fluctuating loads, such as electric arc furnaces, adjustable speed
drives (ASDs), and nonlinear electric devices, are sources of harm-
ful voltage fluctuations, higher order harmonics, amplitude and
phase noise, and system frequency deviation [2].

To deal with these issues in a timely and efficient way, fast and
accurate frequency estimation has attracted much research effort.
A variety of linear and nonlinear architectures and the associated
signal processing algorithms have been developed for this purpose,
including zero crossing techniques [3,4], discrete Fourier transform
(DFT) based algorithms [5,6], phase-locked loops (PLL) [7,8], com-
plex least mean square (CLMS) adaptive filters [9,10], recursive
Newton-type algorithms [11], and Kalman filters [12,13]. Among
these, adaptive approaches based on the minimisation of mean

square error have proved very useful, owing to their simple struc-
ture, computational efficiency and stability, and robustness in the
presence of noise and harmonic distortions.

There are a number of applications where the mean square er-
ror (MSE) criterion is not the most intuitive solution, particularly
when the information of interest is contained predominantly in
either the amplitude or phase of a complex signal. Such is the case
with frequency estimation in power systems, where the desired
information is primarily in the complex phasor, therefore phase er-
ror in the estimation is more critical than the amplitude error, and
hence the standard MSE based CLMS is not best equipped to deal
with predominantly phase error. To that cause, the recent least
mean phase (LMP) algorithm employs an optimisation criterion
based on the phase error [14], and has proven beneficial in com-
munications applications (DS-CDMA receivers), where the relevant
information is in the phase of the transmitted signals rather than in
the magnitude. A continuous-time version of this algorithm has re-
cently been applied to estimate the power system frequency [15],
and its superiority over the standard CLMS was justified by the fact
that the instantaneous frequency estimation is derived from the
well-established phase angle evolution.

Although current adaptive filtering based frequency estimation
algorithms are second order optimal under normal ‘balanced’
power system conditions, and also in noisy environments and in
the presence of high order harmonics and frequency deviations,
they suffer from performance degradation under unbalanced
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voltage conditions. These occur in the case of different amplitudes
of the three phase voltages, or under a voltage sag in one or two
phases. Their inadequacy can be explained by the fact that current
adaptive filters employ the standard linear model to carry out the
phase angle estimation, thus accounting only for the ‘positive se-
quence’ (with positive frequency) in the ab transform, however,
the ‘negative sequence’ introduced by the system imbalance re-
sults in an inevitable estimation error oscillating at twice the sys-
tem frequency [16].

To eliminate the bias and steady state oscillations encountered
by the LMP algorithm under unbalanced system conditions, in this
work, we embark upon the analysis in [17–19] and introduce the
widely linear LMP (WL-LMP) algorithm, which caters for the non-
circular nature of the complex-valued system voltage under the
unbalanced system conditions. This allows us to rectify the issue
of phase angle bias exhibited by the strictly linear LMP algorithm
in unbalanced system conditions, while for balanced systems we
show that WL-LMP degenerates into the strictly linear LMP.

This paper is organised as follows. In Section 2, an overview of
widely linear estimation is provided. The modelling of unbalanced
three-phase power system is addressed in Section 3. In Section 4,
an overview of the standard LMP frequency estimator and its sub-
optimality under unbalanced power systems are discussed. The
widely linear model, which is second order optimal for the gener-
ality of complex-valued signals, and the proposed unbiased widely
linear LMP (WL-LMP) frequency estimator are introduced in Sec-
tion 5. Section 6 presents the stability analysis of WL-LMP. In Sec-
tion 7, simulations over a range of unbalanced and distorted
conditions, including voltage sags, higher order harmonics, and
real-world unbalanced power systems are provided to illustrate
the unbiasedness of the proposed WL-LMP frequency estimator
and its advantages over the mean squared error based widely lin-
ear complex least mean square (WL-CLMS) frequency estimator
[17]. Finally, Section 8 concludes the paper.

2. Widely linear modelling

Consider a real-valued conditional mean square error (MSE)
estimator ŷ ¼ E½yjx�, which estimates the signal y in terms of an-
other observation x. For zero mean, jointly normal y and x, the
optimal solution is given by the linear model

ŷ ¼ xT w ð1Þ

where w = [w1, . . ., wL]T is the vector of fixed filter coefficients,
x = [x1, . . ., xL]T the regressor vector, and (�)T the vector transpose
operator.

In the complex domain, since both the real and imaginary parts
of complex variables are real, we have

RðŷÞ ¼ E½RðyÞjRðxÞ;IðxÞ�
IðŷÞ ¼ E½IðyÞjRðxÞ;IðxÞ�

ð2Þ

and ŷ ¼ E½RðŷÞjRðxÞ;IðxÞ� þ |E½IðyÞjRðxÞ;IðxÞ�, where the operators
Rð�Þ and Ið�Þ extract respectively the real and imaginary parts of a
complex variable. Upon substituting RðxÞ ¼ ðxþ x�Þ=2 and
IðxÞ ¼ ðx� x�Þ=2|, we arrive at

ŷ ¼ E½RðyÞjx; x�� þ |E½IðyÞjx;x�� ¼ E½yjx;x�� ð3Þ

leading to the widely linear estimator

ŷ ¼ hT xþ gT x� ¼ xT hþ xHg ð4Þ

where h and g are complex-valued coefficient vectors. Such a
widely linear estimator is optimal for the generality of complex sig-
nals. From (4), it is apparent that the covariance matrix Cxx = E[xxH]
alone does not have sufficient degrees of freedom to describe full
second-order statistics [20], and in order to make use of all the

available statistical information, we also need to consider the pseu-
do-covariance matrix Pxx = E[xxT]. Processes whose second-order
statistics can be accurately described by only the covariance matrix,
that is with Pxx = 0, are termed second-order circular (or proper),
such signals have rotation-invariant distributions P½�� for which
P½z� ¼ P½zejh� for h 2 [0, 2p). However, in order to cater for second
order noncircular (or improper) signals (with rotation dependent
distributions), the widely linear model in (4) should be employed,
whereby the regressor vector is produced by concatenating the in-
put vector x with its conjugate x⁄, to give an augmented (2L � 1)-
dimensional input vector xa = [xT, xH]T, together with the
augmented coefficient vector wa = [hT, gT]T. The corresponding
(2L � 2L)-dimensional augmented covariance matrix then becomes

Ca
xx ¼ E½xaxaH� ¼ E

x
x�

� �
½xHxT � ¼

Cxx Pxx

P�xx C�xx

� �
ð5Þ

and contains the full second order statistical information [21–23].

3. Unbalanced three-phase power systems

The three-phase voltages of a power system in a noise-free
environment can be represented in a discrete time form as

vaðkÞ ¼ Va cosðxkDTþ /Þ

vbðkÞ ¼ Vb cos xkDTþ /� 2p
3

� �

vcðkÞ ¼ Vc cos xkDTþ /þ 2p
3

� � ð6Þ

where Va, Vb, Vc are the peak values of each fundamental voltage
component at time instant k;DT ¼ 1

fs
is the sampling interval where

fs is the sampling frequency, / is the initial phase, and x = 2p f is
angular frequency of the voltage signal, with f being the system fre-
quency. For analysis purpose, the time-dependent three-phase volt-
age in (6) is routinely transformed by the orthogonal ab
transformation matrix [24] into a zero-sequence v0 and the direct
and quadrature-axis components, va and vb, as

v0ðkÞ
vaðkÞ
vbðkÞ

2
64

3
75 ¼

ffiffiffi
2
3

r ffiffi
2
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2

ffiffi
2
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2

ffiffi
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2

1 � 1
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0
ffiffi
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3
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64
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75 ð7Þ

where the factor
ffiffiffiffiffiffiffiffi
2=3

p
ensures that the system power is invariant

under this transformation. In balanced system conditions, Va(k),
Vb(k), Vc(k) are identical, giving v0(k) = 0, va(k) = A cos (xkDT + /)
and vbðkÞ ¼ A cos xkDTþ /þ p

2

� �
. The amplitude, A ¼

ffiffi
6
p
ðVaþVbþVcÞ

6 , is
constant while va(k) and vb(k) represent the orthogonal coordinates
of a point whose position is time variant at a rate proportional to
the system frequency. In practise, normally only the va and vb are
used to form the complex system voltage v(k) (known as Clarke’s
transformation [25]), given by

vðkÞ ¼ vaðkÞ þ |vbðkÞ ¼ Aejðxkþ/Þ ð8Þ

Fig. 2(a) illustrates that for a balanced system state, the probability
density function of v(k) is rotation invariant (circular), since v and
vejh have the same distribution for any real h. Statistically, this
means that v(k) is second order circular (proper) and with equal
powers in va and vb, and thus the covariance matrix, C = E[vvH], is
sufficient to fully describe the second order statistics, while the
pseudocovariance matrix, P = E[vvT] = 0, vanishes as discussed in
Section 2. However, when the three-phase power system deviates
from its nominal condition, such as when the three channel volt-
ages exhibit different levels of dips or transients, Va, Vb, Vc are not
identical and the complex ab voltage becomes
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