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a b s t r a c t

Many applications of Fuzzy Power Flow have been proposed not only for operational purposes considering
uncertainties, but also for planning exercises with high level of intermittent sources, interconnection pres-
ence and, more recently, electric vehicles load. However, their use in real systems is not usual, mainly where
the uncertainty level can be significant. This is due to the low accuracy of the results related to the classical
methods, and the computational burden needed to achieve a high level of accuracy in the symmetric
approaches. This paper aims to present a linearization of the Symmetric Fuzzy Power Flow in order to
reduce the computational effort and make it possible for it to achieve high levels of accuracy when applied
to real systems. With the purposes of demonstrating the applicability of the proposed approach, several
IEEE test systems and a planning configuration of the Portuguese Transmission System will be studied.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertain variables are usual in power systems and they should
be considered in planning and forecasting problems [1]. In fact, a
more complex analysis, such as load flow, cannot be performed
only taking into account a deterministic approach. Therefore, tools
capable of modeling uncertainty are needed for power system
evaluation. Borkowska presented the concept of the Probabilistic
Power Flow (PPF), applied to the DC model, in which uncertainties
in nodal power injections are modeled by probabilistic functions
[2]. Later, this analytical version of PPF was developed for the AC
formulation [3] and, afterwards, numerical approaches [4] were
also applied. In the context of analytical PPF, the Boundary Load
Flow (BLF) [5] was developed. The main objective of this algorithm
is to evaluate the maximum and minimum values that the state
variables of Power Flow (PF) problem can assume.

Nevertheless, the majority of uncertain variables in power sys-
tems can be viewed also as non-probabilistic, mainly under opera-
tional conditions. The magnitude of load in a certain moment
depends, for instance, on economic growth, social conditions and
human behavior; these are always changing. Therefore, in some
cases, using past experiences to evaluate events in the future can

be an incomplete approach. On the contrary, the uncertainties in real
power systems are usually related with imprecise qualitative infor-
mation. Furthermore, they can be also linked with some aspects of
common language: sentences such as ‘‘generation between 15 and
25 MW’’ and ‘‘load around 5 MW’’ are typical examples of vague
information that come from the experience of the System Operator.

The non-probabilistic nature of the power system inputs under
operational conditions lead to alternative ways of modeling uncer-
tainty. Imprecise data is usually modeled using fuzzy sets [6–8],
which can reproduce and analyze the vagueness and inexactitude
presented in some variables in terms of mathematical precision.
In order to consider fuzzy uncertainties in load flow studies, Miran-
da and Matos [9] proposed the Fuzzy Power Flow (FPF). This ap-
proach aims to calculate the unknowns of Power Flow problem,
considering that the power injections in the nodes are described
using possibility distributions, modeled by fuzzy membership
functions [7,8].

The introduction of possibility models in load flow analysis was
widely accepted. In [10,11], arithmetic interval are used to solve
the uncertain load flow problem. Although it is a particular case
of fuzzy models, it was presented as an alternative way of repre-
senting the boundaries of the uncertainty. It paved the way to a
new BLF approach [12], which takes imprecise and vague informa-
tion as input variables rather than probabilistic density functions.

Since its first presentation, FPF has been applied to the opera-
tion and planning of power systems, either in generation transmis-
sion [13,14] or in distribution systems [15,16], leading to new
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requirements and approaches for FPF. Therefore, throughout the
years, some changes were implemented to the classic formulation
of FPF. For instance, in [17], some enhancements were introduced
in order to consider correlated data between the nodes.

This paper will describe some of those improvements prior to
the development of the Symmetric Fuzzy Power Flow (SFPF). After-
wards, a methodology to reduce the computational time of SFPF
will be presented, so that the application in large-scale systems
can be possible.

2. Fuzzy Power Flow: Classic and revisited approaches

Over the years, several versions of the FPF have been proposed.
In general, they are divided into different applications from radial
distribution systems to massed transmission systems. In terms of
methodologies, they can be viewed as a classic approach and a
revisited FPF approach.

2.1. Classic approach

The classic approach of FPF, proposed in [9] and developed in
[18], relies on the application of the fuzzy sets theory to the tradi-
tional PF equations, both in the AC and DC models.

The DC formulation algorithm starts by running a deterministic
DC PF, in order to calculate the crisp values of the bus angles (hd)
and the line flows (Pdik). Afterwards, the possibility distributions
that describe the active power at the nodes are specified. These
possibility functions are calculated based on the crisp value as well
as on the given uncertainty deviations (e.g. 5%). Normally, Triangu-
lar Fuzzy Numbers and Trapezoidal Fuzzy Numbers [7] are used to
represent these distributions. The power injection uncertainty at
each bus corresponds to the deviations ðDePÞ between the extremes
of the triangle/trapezoid and the deterministic value. Considering
the admittance matrix [B] of the deterministic DC model and the
sensitivity matrix [A], the angles and flows deviations can be calcu-
lated as follows:

½D~h� ¼ ½B��1 � ½DeP � ð1Þ

½DePik� ¼ ½A� � ½DeP� ð2Þ

The membership functions of the resulting angles ðh
�
Þ and lines

ðP
�

ikÞ can be calculated by superimposing the deterministic values
and the deviations:

½~h� ¼ ½hd� þ ½D~h� ð3Þ

½ePik� ¼ ½Pdik� þ ½DePik� ð4Þ

The AC FPF extends the DC formulation to the uncertainties of
the reactive power, voltage magnitudes and losses. Therefore, the
AC formulation aims to determine the possibility distributions of
voltage magnitudes ðePÞ and phases ð~hÞ at the nodes as well as cur-
rents and losses in the lines, considering a given range of power
injections, which are represented by fuzzy numbers.

Similarly to the DC case, the classic algorithm for AC FPF starts
by running a deterministic PF, adopting, for instance, the Newton–
Raphson method, so that crisp values of the voltages (Vd) and an-
gles ð~hdÞ can be obtained. Afterwards, the power deviations are
determined for all buses, excluding the slack bus. Using the in-
verted Jacobean matrix that results from the deterministic PF, it
is possible to calculate the voltage and angle deviations and, conse-
quently, the respective membership functions:

D~h

DeV
" #

¼ ½J��1 DeP
DeQ
" #

ð5Þ

½~h� ¼ ½hd� þ ½D~h� ð6Þ

½eV � ¼ ½Vd� þ ½DeV � ð7Þ

The fuzzy values regarding active and reactive flows can be ob-
tained using the same superposition principle. Therefore, the
power deviations related to the branch i–k (DePik and D eQ ik) are cal-
culated through the linearization of the flows equations, using the
first term of their expansion in the Taylor Series around the crisp
values obtained in the deterministic PF (Vd_i, Vd_k, hd_i and hd_k):

DePik ¼
@Pik

@Vi
DeV i þ

@Pik

@hi
D~hi þ

@Pik

@Vk
DeV k þ

@Pik

@hk
D~hk ð8Þ

DeQ ik ¼
@Q ik

@Vi
DeV i þ

@Q ik

@hi
D~hi þ

@Q ik

@Vk
DeV k þ

@Q ik

@hk
D~hk ð9Þ

2.2. Motivation for changing the classic FPF approach

The classic approach previously presented was developed under
the assumption that the uncertainties regarding power injection in
the nodes are relatively narrow. This assumption is necessary to
ensure the possibility of a linearization around the crisp values.
Nevertheless, in some cases, the linearization does not give fully
satisfactory results. For example, in the calculation of the branch
flows, the values obtained for lightly loaded lines are usually af-
fected by errors related with the linearization procedure.

Another imprecision in FPF results is associated with the slack
bus. In fact, the membership function of this node is determined at
the end of the FPF algorithm, following the same principle applied
to the deterministic PF. In the crisp PF, the slack bus represents a
mathematical artifice that is used to solve the Newton–Raphson
method and to compensate for the non-predictable losses that come
from the resulting flows. However, in classic FPF, the slack bus also
compensates the uncertainty associated with other nodes.

In order to understand this phenomenon, one can consider a
system with 3 nodes and 3 lines, as presented in Fig. 1a. Just for
simplification reasons, a DC model with equal branches is assumed
and bus 1 was chosen as the slack. If the maximum demand
happens in bus 3 (4 MW) and node 2 is generating at the minimum
level (1 MW), bus 1 should generate 3 MW. On the other hand, if
bus 3 is consuming at a low level (2 MW) and the maximum

Fig. 1a. Assumed uncertainties.
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