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a b s t r a c t

Effectiveness of a multi-input, multi-output (MIMO) feedback linearization controller (FBLC) for power
oscillation damping is illustrated in this paper. Oscillatory behavior of the system is estimated online
from the measured quantities using a special form of neural network compatible with the feedback lin-
earization framework. Levenberg–Marquardt (LM) algorithm is adapted to operate in a sliding window
batch mode for estimation of the neural network parameters. The coefficient vector in the FBLC formu-
lation is updated adaptively using the projection algorithm to suit changing operation scenarios. A case
study is presented on a reasonably large-scale power system having three critical oscillatory modes. Two
power electronic actuators located on separate transmission lines are used to control these modes result-
ing in a MIMO controller. Proposed FBLC is shown to yield acceptable closed-loop dynamic response with
very little information about the plant model. Performance of the FBLC is benchmarked against a conven-
tional model based controller.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Power systems behavior is highly nonlinear in nature. Under
stressed operating conditions the nonlinear effects are more prom-
inent. However, linear controllers are usually designed to provide
satisfactory performance around a single operating condition.
The performance radius of such linear controller can be widened
using robust control techniques [1–4]. However, following severe
contingencies, the post-contingency system can be significantly
different from its nominal operating states and even beyond the
performance radius of designed robust controllers. In addition,
the robust control designs require a system model for certain oper-
ating condition and the performance radius is extended around
that operating point.

Conventional model based techniques [4–7] are used for control
design which rely on the availability of accurate parameters and
knowledge of the operating condition of the system. This depends
on the accurate information of network topology and power flow
scenario [8]. These are often difficult to obtain in real-time envi-
ronment. To ensure very little reliance on accurate system model,
different adaptive techniques have been proposed such that the
controller is ‘self-tuned’ at each operating condition [4]. These
techniques have been widely used for different nonlinear systems
such as robotics and aircraft systems. Similar techniques have also
been adopted for power system applications. Self-tuning control,

relying solely on measured signals, has been proposed for power
system stabilizers (PSSs) [9] and flexible ac transmission systems
(FACTSs) devices [10] to overcome some of the problems of model
based designs [7], which are difficult to obtain in the real-time
environment.

Oscillatory behavior of the system is usually estimated in auto
regressive moving average (ARMA) form or standard neural net-
work structures using least square technique. For linear control,
pole-shifting controller has been mostly proposed based on the
estimated model [11]. But presence of nonlinearity in the mea-
sured signal can affect the performance of the linear controller
[12]. While neural network type of nonlinear approximator and
controller have been proposed by many researchers [13], a classical
nonlinear control framework is hard to find [14–16].

NN offers a tool to model nonlinear data which is applied in
modelling of complex relationships between inputs and outputs.
It is an extremely powerful and growing rapidly in the many appli-
cations, for example, where tasks involving information process-
ing, learning and adaptation are required. In most of the
industrial applications, NN is an adaptive system that changes its
structural parameters based on the external or internal informa-
tion that flows through the network. The useful and important
characteristics of NN are:

� large number of neurons, highly parallel neuron units,
� strongly connected neurons, robustness against the failure of

neuron unit, and
� learning from data.

0142-0615/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijepes.2012.08.051

⇑ Corresponding author.
E-mail addresses: jawad.arif07@imperial.ac.uk (J. Arif), rays@ge.com (S. Ray),

b.chaudhuri@imperial.ac.uk (B. Chaudhuri).

Electrical Power and Energy Systems 45 (2013) 87–97

Contents lists available at SciVerse ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes

http://dx.doi.org/10.1016/j.ijepes.2012.08.051
mailto:jawad.arif07@imperial.ac.uk
mailto:rays@ge.com
mailto:b.chaudhuri@imperial.ac.uk
http://dx.doi.org/10.1016/j.ijepes.2012.08.051
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


Moreover, neural network architectures are easy to reshape into
a desired form depending upon the application type, as in this
work NN is reshaped into novel structure called FLNN. Whilst
selecting a network type for function approximation, a compro-
mise between several desired features must be made. The NN is
chosen in this work because of its suitability for recurrent use
and online specific features (suitability for online identification,
etc.).

Use of multi-layer perceptron (MLP), radial basis function (RBF),
recurrent and simultaneous recurrent neural network (RNN and
SRN) has been reported for online estimation of input–output
mapping of systems [16–18]. These methods typically use back-
propagation (BP) or back-propagation through time (BPTT) to
update the neural network parameters online. Each of these have
their own limitations related to convergence time and accuracy
[16–18]. In classical nonlinear control framework, controlling non-
linear systems through feedback linearization is focused around
geometric techniques. However, applicability of these approaches
has been quite limited, because they rely on exact knowledge of
nonlinearities. To relax some of the exact model-matching restric-
tions, several adaptive schemes have recently been introduced that
tolerate some linear and nonlinear parametric uncertainties [19].

In order to exploit the capabilities of neural networks (NNs) for
estimation of nonlinear dynamics while keeping a classical nonlin-
ear control framework, an online LM [20] algorithm is adopted in
this paper in conjunction with the feedback linearization controller
[21–24]. In [25], the FBLC has been used to damp single modal
oscillation using a single-input, single-output (SISO) controller.
This paper is an extension in the MIMO framework. The MIMO sys-
tem provides more limitation for the choice of controller design
over SISO system. A special form of nonlinear neural network
called feedback linearizable neural network (FLNN) compatible
with the FBLC, is used to represent the nonlinear low frequency
dynamics of the system. This paper shows that the FBLC and FLNN
can be utilized to generate different control laws for multiple actu-
ating devices under various operating scenarios without the need
of manual re-tuning. The use of online LM algorithm for estimation
of the system model provide faster convergence and better

accuracy which can be used to damp low frequency oscillations
in the power systems. For the current online application, the clas-
sical LM is modified to work in sliding window batch mode.

The efforts were made for an improved control of PSS/FACTS de-
vices by using the FBLC controllers [4–6]. In order for the PSS/
FACTS devices to provide an appropriate damping over a wide
range of operating points, its parameters needs to be fine-tuned
in response to the oscillations. Power systems are highly nonlinear
with time varying parameters, and a fixed control design based on
the linearized model may not guarantee satisfactory performance
over various operating conditions [26]. Also to restrict the control-
ler in the linear domain might not be workable especially under se-
ver loading conditions. Thus, in this paper FBLC controller takes
account of the nonlinearities in system and adapts to the changes
in operating conditions could potentially yield better results. This
is achieved by introducing the adaptive coefficient vector in FBLC
at each time step, to suite different operating scenarios. The con-
troller structure and weight update is devised to avoid divide-by-
zero problem for the implementation of the FBLC.

Although the broad topics areas are the same in this paper and
[25], however, this one paper differs from the [25] as follows:

1. This paper presents the online identification control of
MIMO system and feedback linearization structure of
neural network (FLNN) is used for the modelling of non-
linear dynamic behavior of the power system. While
[25] describes the SISO identification and control of
power systems with simple neural network structure.

2. The test system in this paper is 16-machines, 5-area power
system and is multi-modal with highly nonlinear charac-
teristics. While in the paper [25], 4-machines, 2-area power
systems has a single mode and is easy to damp the oscilla-
tions as compared to 16-machine, 5-area power system.

3. The parameters update equations in this paper are done
in a more effective way as compared to [25].

4. Here in this paper, Section 2.4 is introduced which is not
present in [25]. It was observed that the process of
choosing the lambda in (14) is not easy. Moreover, FBLC

Nomenclature

ARMA auto regressive moving average
SISO single-input, single-output
MIMO multi-input, multi-output
NN neural network
MLP multi-layered perceptron
RBF radial basis function
RNN recurrent neural network
SRN simultaneous recurrent neural network
GN generalized neuron
FLNN feedback linearizable neural network
LM Levenberg Marquardt algorithm
CCL conventional control
FBLC feedback linearization control
PSS power system stabilizers
TCSC thyristor controlled series capacitor
FACTS llexible AC transmission systems
BP back propagation
BPTT back propagation through time
y(�) actual output
ŷð�Þ estimated output
ŷdð�Þ desired output or desired trajectory
u(�) control signal

ws number of samples in a window
�e error vector over a window
v learning rate-estimation
W input weights of NN
V output weights of NN
�x measurement vector
�u control vector
J Jacobian
�p estimated parameters (weights) of NN
W(�) nonlinear function of hidden layer neurons
n number of previous measurements
m number of previous control inputs
np number of outputs
mp number of inputs
N number of neurons in hidden layer
xd desired trajectories over a window
ys system outputs over a window
r filter error
K initial coefficient vector in FBLC
Kv gain of the error feedback loop
c learning rate-FBLC
a arbitrary constant
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