
Decomposition–coordination interior point method and its application
to multi-area optimal reactive power flow

Wei Yan a,⇑, Lili Wen b, W. Li c, C.Y. Chung a,d, K.P. Wong d

a State Key Laboratory of Power Transmission Equipment & System Security and New Technology, College of Electrical Engineering, Chongqing University, Chongqing 400030, China
b Test & Research Institute of Chongqing Electric Power, Chongqing 401123, China
c British Columbia Transmission Corporation, Vancouver, BC, Canada V7X 1V5
d Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:
Received 17 February 2009
Received in revised form 3 March 2010
Accepted 13 August 2010

Keywords:
Distributed calculations
Interior point method
Multi-area problems
Optimal reactive power flow
Power system decomposition

a b s t r a c t

A decomposition–coordination interior point method (DIPM) is presented and applied to the multi-area
optimal reactive power flow (ORPF) problem in this paper. In the method, the area distributed ORPF prob-
lem is first formed by introducing duplicated border variables. Then the nonlinear primal dual interior
point method (IPM) is directly applied to the distributed ORPF problem in which a Newton system with
border-matrix-blocks is formulated. Finally the overall ORPF problem is solved in decomposition itera-
tions with the Newton system being decoupled. The proposed DIPM inherits the good performance of
the traditional IPM with a feature appropriate for distributed calculations among multiple areas. It can
be easily extended to other distributed optimization problems of power systems. Numeric results of five
IEEE Test Systems are demonstrated and comparisons are made with those obtained using the traditional
auxiliary problem principle (APP) method. The results show that the DIPM for the multi-area OPRF prob-
lem requires less iterations and CPU time, has better stability in convergence, and reaches better optimal-
ity compared to the traditional auxiliary problem principle method.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

A modern power system is an interconnected grid and contains
widely distributed sub-networks each of which represents an inde-
pendent utility. Generally, each utility company has its own oper-
ation criteria and separate EMS. Local optimal simulations in the
individual EMSs will produce great errors. Therefore, there is a
need of coordinating solutions of the individual EMSs to achieve
the overall optimal solution. Decomposition techniques in a dis-
tributed computing environment have attracted great attention.

Many different decomposition techniques have been proposed
during the past forty years, such as Dantzig-Wolfe technique
[1,2], Lagrangian relaxation technique [3], augmented Lagrangian
technique [4–7], and approximate Newton directions [9,10]. Partic-
ularly remarkable is the theoretical decomposition framework
based on the auxiliary problem principle (APP). It has been used
widely in solving many operation problems of power systems, such
as the daily generation scheduling [4], distributed state estimation
[5], multi-area optimal power flow [6,7], and multi-area ORPF [8].
But the APP method presents only modest speed-ups and efficien-

cies even in ideal situations [6], and sometimes leads to poor con-
vergence when related parameters are selected improperly [10].

This paper proposes a new decomposition method based on the
nonlinear primal dual interior point method (IPM) [11–15]. Similar
to the APP method, the proposed method also uses the concept of
duplicated border variables to implement an area decomposition
of the original overall problem. Differently, in the proposed meth-
od, the objective function, variables and constraints are structured
in such a way that a Newton system with border-matrix-blocks is
created. This Newton system is then decoupled into a set of linear
subsystems so that the overall problem can be solved through sep-
arate computations of linear area subsystems in the Newton itera-
tion process of IPM. The proposed method only computes the
linear subsystems corresponding to individual areas and avoids
resolutions of optimization sub-problems with respective iteration
processes. Thus, the proposed method has an advantage in compu-
tational efficiency superior to the APP and other Lagrangian relax-
ation or augmented Lagrangian decomposition algorithms while it
inherits good performance of the IPM in fast convergence. This is
because the proposed method only needs the decoupling imple-
mentation of the Newton system in the IPM.

The proposed decomposition–coordination interior point meth-
od (DIPM) is applied to solve the multi-area optimal reactive power
flow (ORPF) in the paper. It should be pointed out that it can also be
extended to other distributed computing problems of power sys-
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tems. The rest of the paper is organized as follows. Section 2 pro-
vides the formulation of area decentralization model of ORPF. Sec-
tion 3 describes the proposed decomposition method. In Section 4,
numerical examples are given to demonstrate the effectiveness of
the proposed method, followed by Section 5 for conclusions.

2. Area decentralization model of ORPF

2.1. Centralized ORPF formulation

The formulation of the original ORPF problem can be mathe-
matically expressed as the following minimization nonlinear pro-
gramming problem:

min f ðxÞ
s:t: gx ¼ 0

x 6 x 6 �x
ð1Þ

where the objective function f(x) is total active power losses; g(x) is
the nonlinear vector function representing power flow equations; x
is the vector of state and control variables, including voltage magni-
tudes and angles at load buses, injected reactive powers of genera-
tors, voltage magnitudes at generator buses, reactive powers of
shunt capacitors/reactors and transformer tap ratios; �x and x are
the vectors representing operational limits on state and control
variables.

2.2. Area-based decentralization for ORPF

The decomposition idea has been described in [6]. The basic ap-
proach is to divide the overall system into geographical areas. Any
transmission line that crosses between two adjacent areas is di-
vided into two sections by adding a ‘‘dummy bus” at the border be-
tween the two areas. Real and reactive power flow variables and
voltage magnitude and angle variables are defined for the dummy
bus and these four border variables are duplicated, with one copy
assigned to each area. To be consistent with the overall formula-
tion, any pair of corresponding duplicated variables in the two
areas has the exactly same value.

The decomposition method of an interconnected power system
can be explained using Fig. 1. The system consists of two areas as
shown in Fig. 1a. Area-1 and area-2 are connected by the border
bus B. xI1 and xI2 denote the internal variables belonging to each
area. xB is the border variables of bus B, which includes its voltage
magnitude, voltage angle, active and reactive powers transferred
along the tie-line. By splitting bus B into two duplicated dummy

buses B1 and B2, as shown in Fig. 1b, two separated systems are ob-
tained with each one having a dummy bus. At the same time, xB is
also duplicated as xB1 and xB2 which are assigned to area-1 and
area-2 respectively.

With such duplication of border variables, problem (1) is fully
equivalent to the following expression:

min f 1ðxI1; xB1Þ þ f2ðxI2; xB2Þ
s:t: g1ðxI1; xB1Þ ¼ 0

g2ðxI2; xB2Þ ¼ 0
xI1 6 xI1 6 �xI1

xI2 6 xI2 6 �xI2

xB1 6 xB1 6 �xB1

xB2 6 xB2 6 �xB2

xB1 � xB2 ¼ 0

ð2Þ

where fi(xIi, xBi) represents the objective function of each subsystem
or area-i, whose equality constraints are denoted by gi(xIi, xBi) = 0.
Equation xB1 � xB2 = 0 represents the condition that any pair of
duplicated variables in the two areas has the exactly same value.

Formulation (2) is the area-based decentralization model of
ORPF. Apparently, formulation (2) can be extended to a system
with N areas. By denoting xi for (xIi, xBi)T (i = 1, 2) and Ai for the
coefficient matrix representing the coupled border condition, a
general formulation for the multiple-area model of ORPF can be ex-
pressed as follows:

min F ¼
XN

i¼1

fiðxiÞ

s:t: giðxiÞ ¼ 0
xi 6 xi 6 �xiX

i

Aixi ¼ 0; i ¼ 1; . . . ;N

ð3Þ

It can be seen from formulation (3) that the objective function
and all the constraints except for the coupled border condition
can be divided into N independent sub-problems, and the variables
in each sub-problem are associated with ones in other sub-prob-
lems only through the coupled border constraints.

3. Decomposition–coordination IPM

In this section, the decomposition–coordination interior point
method (DIPM) for the distributed ORPF problem is presented. The
key idea is the construction of a border-matrix-block and the decou-
pling of the Newton system in applying the IPM to problem (3).

3.1. IPM for ORPF

The ORPF problem shown in formulation (3) can be solved di-
rectly using the IPM. In this method, slack variables and Lagrange
multipliers are introduced to deal with inequality and equality con-
straints, and logarithmic barrier functions are used to guarantee the
non-negativity condition of slack variables. Then the ORPF problem
given in the formulation (3) is transformed into one non-constrained
optimization problem with the following Lagrange function:

L ¼
XN

i¼1

fiðxiÞ �
XN

i¼1

yT
i giðxiÞ �

XN

i¼1

zT
i ðxi � li � xiÞ þ

XN

i¼1

wT
i ðxi

þ ui � �xiÞ � yT
d

XN

i¼1

Aixi

" #

�
XN

i¼1

li

Xni

j¼1

lnðliðjÞÞ þ
Xni

j¼1

lnðuiðjÞÞ
" #

ð4Þ

(a)  

(b)  
Fig. 1. Decomposition of an interconnected power system.
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