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a b s t r a c t

A detailed description of the numerical Laplace transform (NLT) for electromagnetic transient calculation
on power system devices under linear and non-linear conditions is presented in this paper. The develop-
ment and main advantages of the NLT are reviewed, as compared to the conventional time domain sim-
ulation, including current practices for reducing numerical errors derived from data truncation and
discretization of the analytical equations. A simple technique based on the superposition principle to
include non-linear conditions in the frequency domain is also fully described. Besides, important results
obtained recently with the NLT for different power components are presented, including comparisons
with widely used time domain methods, such as the method of characteristics, and the professional sim-
ulation program EMTDC. Such comparisons reveal a high accuracy of the numerical Laplace transform
when applied to the presented studies.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Switching operations, faults and lightning can produce severe
transient overvoltages that are dangerous to power system compo-
nents such as transmission lines, underground cables, rotatory
plant, transformers, grounding systems, etc. An accurate analysis
of these disturbances is very important for insulation coordination
design and testing stages, and is usually performed either with
time or frequency domain methods. In general the former are pre-
ferred, mainly due to their ability to include non-linear and time
varying elements, the short computer times required, and the pos-
sibility to perform real time simulations. In addition, the time do-
main program EMTP (Electromagnetic Transients Program), is
nowadays the most widely used tool for simulation of electromag-
netic transients in power systems [1].

As an inherent nature of electromagnetic transients models of
power system devices, their electrical parameters are frequency
dependent. The inclusion of this dependence is difficult in time
domain models, especially for highly complex geometrical config-
urations of transmission lines and underground cables. Several
approaches have been applied to overcome this problem since
early 70s [2–7], but even the most advanced line and cable mod-
els consider approximations that are prone to errors in highly
frequency dependent systems [8]. In contrast, when using fre-

quency domain methods, such as those based on the Fourier or
Laplace transforms [9–17,30], frequency dependent elements
are included in a straightforward manner, since these parameters
can be analytically described in the frequency domain. Thus, a
method based in this domain offers the most theoretically exact
transient solution.

Frequency domain methods are in general linear and time
invariant, which precludes the analysis of switched networks and
the inclusion of non-linear components. However, the superposi-
tion principle has been applied to overcome this situation with
successful results [8,17,18]. The numerical Laplace transform has
been applied to analyze transients in particular elements such as
uniform transmission lines, as well as nonuniform and field excited
transmission lines, underground cables, transformer and machine
windings, etc. [8,18–23]. Besides, the NLT has been widely used
in testing new time domain model developments.

In this article the basic development of the numerical Laplace
transform is described, discussing fundamental sources of numer-
ical errors and current practices to reducing them. Besides, a sim-
ple technique to take into account non-linear conditions in
simulations is included. Significant results obtained with this tech-
nique in the field of power system transients are presented, consid-
ering 3 different application cases:

(a) Sequential energization of transmission line.
(b) Fast transient overvoltage in machine winding.
(c) Transient response of an underground cable transmission

system.
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All these examples consider frequency dependent effects.
Results are compared with time domain simulations performed
with the professional program EMTDC and the method of
characteristics.

2. Basic development of the NLT

Let f(t) be a causal time domain function and F(s) its image in
the frequency domain. Defining the Laplace variable as s = c + jx,
direct and inverse Laplace transforms are given by

Fðc þ jxÞ ¼
Z 1

0
½f ðtÞe�ct�e�jxtdt ð1aÞ

f ðtÞ ¼ ect

2p

Z 1

�1
Fðc þ jxÞejxtdx ð1bÞ

where x is the angular frequency and c is a stability constant. It can
be noticed that when c = 0, (2a) and (2b) correspond to the Fourier
transforms

FðjxÞ ¼
Z 1

0
f ðtÞe�jxtdt ð2aÞ

f ðtÞ ¼ 1
2p

Z 1

�1
FðjxÞejxtdx ð2bÞ

Comparison of (1a) and (2a) shows that the Laplace transform can
be obtained applying the Fourier integral to f(t)exp(�ct), i.e., a
damped version of f(t). Hence, c is also known as damping constant
and, as will be seen, its correct definition is fundamental to reduce
aliasing errors.

The application of (1a) and (1b) (or (2a) and (2b)) for real prac-
tical systems can be very difficult or even impossible. In conse-
quence, these expressions have to be evaluated numerically,
giving rise to truncation and discretization errors. Practical tech-
niques for reducing numerical errors when inverting from Laplace
frequency domain to time domain are addressed in the following
subsections.

2.1. Truncation errors

Assuming in this Section that c = 0, (2b) is numerically evalu-
ated in the finite range [�X, X] as follows

f ðtÞ ¼ 1
2p

Z X

�X
FðjxÞejxtdx ð3Þ

where X is the maximum frequency. Eq. (3) can be rewritten as

f 0ðtÞ ¼ 1
2p

Z 1

�1
FðjxÞHðxÞejxtdx; ð4Þ

where

HðxÞ ¼
1; �X 6 x 6 X

0; x < �X and x > X

�
ð5Þ

From (2b) and (4)

F 0ðjxÞ ¼ FðjxÞHðxÞ ð6Þ

and from the convolution theorem

f 0ðtÞ ¼ f ðtÞ � hðtÞ; ð7Þ

where h(t) is the inverse Laplace transform of H(x), computed as
follows

hðtÞ ¼ 1
2p

Z 1

�1
HðxÞejxtdx ¼ X

p
sinðXtÞ

Xt
ð8Þ

According to (7) and (8), truncation of the frequency spectrum is
equivalent to the convolution of f(t) and a sinc function in time
domain. As an example, let f(t) be a unit step function (Fig. 1b).

Waveform obtained from its convolution with h(t) (Fig. 1a) shows
high frequency oscillations near the discontinuities (Fig. 1c), known
as Gibbs oscillations, which lead to amplitude errors unacceptable
for transient analysis purposes. This magnitude can be reduced to
an acceptable value by the introduction of some suitable data win-
dow r(x), e.g., multiplying F(jx) by r(x). Among a variety of exist-
ing data windows for digital signal processing, Day et al. introduced
in 1965 the use of the Lanczos window for transient analysis [10],
while Wedepohl proposed in 1983 the use of the Hamming window
[24]. More recently, the Hanning (Von Hann) and Blackman win-
dows have also been tested, yielding satisfactory results [8]. Fig. 2
shows these data windows, while Table 1 lists their respective
equations. It should be noted that these equations are valid for
jxj < X.

2.2. Discretization errors

Eq. (2b) can be expressed in discrete form as

f1ðtÞ ¼
Dx
2p

X1
n¼�1

FðjnDxÞejnDxt ð9Þ

where Dx is the spectrum integration step. From the sampling
property of a Dirac function, the term inside the summation can
be expressed as follows

f1ðtÞ ¼
1

2p

Z 1

�1
FðjxÞGðxÞejxtdx; ð10Þ

being G(x) a Dirac comb in the frequency domain
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Fig. 1. Convolution of f(t) and h(t).
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Fig. 2. Data windows.
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