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Abstract

This paper presents a new solution using the semidefinite programming (SDP) technique to solve the optimal power flow problems
(OPF). The proposed method involves reformulating the OPF problems into a SDP model and developing an algorithm of interior point
method (IPM) for SDP. That is said, OPF in a nonlinear programming (NP) model, which is a nonconvex problem, has been accurately
transformed into a SDP model which is a convex problem. Based on SDP, the OPF problem can be solved by primal–dual interior point
algorithms which possess superlinear convergence. The proposed method has been tested with four kinds of objective functions of OPF.
Extensive numerical simulations on test systems with sizes ranging from 4 to 300 buses have shown that this method is promising for
OPF problems due to its robustness.
� 2008 Published by Elsevier Ltd.
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1. Introduction

Since the early 60s of the last century, optimal power
flow (OPF) as a powerful tool for power system optimiza-
tion problems has attracted many researchers over the
world [1,2]. Numerous algorithms have been developed in
this area based on linear programming (LP), quadratic pro-
gramming, Newton’s method, nonlinear programming
(NLP) and decomposition method [3]. Recently, NLP-
based algorithms using interior point methods (IPM) have
also been applied to OPF problems successfully [4–7].
However, as power systems are getting more complex,

the OPF problems turn to be more difficult to handle.
Although the theory on IPM for NLP has been well devel-
oped, many issues remain open when building the links
between the modeling and the associated algorithms. First
of all, the NLP-based OPF has the convergence problem
due to its nonconvex nature. Moreover, in order to use
IPM for NLP, the Jacobian matrices (the first-order partial
derivatives) and the Hessian matrices (the second-order
partial derivatives) have to be derived for each specific
problem. As a result, it is not convenient to develop a gen-
eral and uniform software solution for the NLP problems
using IPM.

The semidefinite programming (SDP) [8,9] has been one
of the most active fields in numerical optimization for over
a decade. Many well-known algorithms with uniform
frameworks have been exploited [10]. It has been proven
that the SDP is convex and the primal–dual interior point
algorithms for SDP may possess superlinear convergence
theoretically [11]. Moreover, the major advantage for the
SDP-based IPM is the avoidance of deriving and comput-
ing the Jacobian matrices and the Hessian matrices for
each particular problem.
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Different practical problems have been solved success-
fully in various domains, such as control and system theory
[12,13], signal processing and communications [14–16], and
combinatorial optimization [17–19]. In [20,21], the SDP has
been used to solve power dispatch problems, which are typ-
ical constrained economic dispatching problems (CED). To
our knowledge, these two paper were pioneering in apply-
ing the SDP technique to power systems. However, the
works in [20,21] did not involve power flow equations
and the bus voltage constraints.

It is significant and challenging to extend the SDP to
solve OPF problems which are know for their inherent
complexity and practicality. Motivations of this study stem
from the following three aspects:

1. The classical OPF problem is a nonconvex NLP [22],
which solution is more complicated than the CED prob-
lems mentioned earlier. On the other hand, the SDP
belongs to convex optimization [23], and can guarantee
global optimal solution using IPM. Therefore, it is
worth to study how to properly reformulate the classical
OPF to a SDP model, due to many advantages of the
SDP technique including its convexity and uniform
algorithm implemental framework of software suite.

2. Once an OPF problem is reformulated to a SDP one
using the quadratic model [24] in the case of the rectan-
gular form, the resulting SDP model should be convex,
and the solution quality can be guaranteed by using
IPM for the SDP [23]. In detail, by applying X = xTx

where x is a row vector and trace operator of matrices
which will be discussed in Section 3, the nonlinear qua-
dratic items of the OPF will be replaced with the rele-
vant elements of the variable matrix X in SDP.

3. Mature techniques such as IPM for LP are available to
solve the SDP problems. Furthermore, the solution
techniques developed for LP which actually is a special
case of SDP are also applicable to SDP [23]. Therefore,
IPM for LP, which can be used to solve convex optimi-
zation problems in polynomial time, can be imple-
mented for SDP [25]. Moreover, IPM enhancements
for LP can also be used in SDP, which renders IPM
for SDP as efficient as that for LP theoretically [26].

2. Formulation of OPF problem

The OPF problem is a large-scale nonlinear optimiza-
tion problem. It can be formulated in polar, rectangular,
or mixture of polar and rectangular forms. In this study,
the rectangular version of the OPF problem is adopted to
take the advantages that the power flow equations are qua-
dratic polynomials without trigonometric functions, which
can then yield the SDP models straightforward. The objec-
tive functions to be minimized are chosen out of active or
reactive power loss of transmission lines, fuel cost, and
total system active power loss. Therefore, the OPF problem
can be formulated as follows:

minimize
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subject to:

1. Power flow equations:
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2. Constraint of reference bus:

es ¼ 1:05; f s ¼ 0 ð3Þ
3. Limits of active and reactive power:

P Gi 6 P Gi 6 P Gi; i 2 SG ð4Þ
QRi 6 QRi 6 QRi; i 2 SR ð5Þ

4. Limits of voltage at each bus:

V 2
i 6 ðe2

i þ f 2
i Þ 6 V 2

i ; i 2 SB ð6Þ
where

afi, ali, aqi: cost coefficients of thermal plant, i,
respectively,
ei, fi: real and imaginary part of voltage at bus i,
_V i: voltage at bus i,
Gij, Bij: real and imaginary part of transfer admittance
between buses i and j,
PGi, QRi: dispatchable active and reactive power at bus i,
PDi, QDi: active and reactive power demand at bus i,
SB, SG, SR: set of buses (nB), thermal plants (nG) and
reactive power sources (nB), respectively,
s: identification serial number of reference bus in the
system,
ð�Þ, ð��Þ: lower and upper limits of variables or functions.

The set of (1)–(6) is known as the classical OPF
problem.

3. Semidefinite programming by IPM

The semidefinite programming [9] is concerned with
choosing a positive semidefinite matrix to optimize a linear
function which is subject to linear constraints. In other
words, the well-known linear programming problem is gen-
eralized by replacing the vector of variables with a symmet-
ric matrix and the nonnegative constraints with a positive
semidefinite constraint. This generalization nevertheless
inherits several important properties from its vector
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