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Abstract

This paper deals with a robust HN power system stabilizer (HPSS) design using reduced-order models to improve the damping oscillation in

power systems. The stabilizer is dynamic, low order and robust. In order to obtain a reduced-order controller, the method of balanced truncation is

used. Sufficient conditions in the form of two algebraic Riccati equations (AREs) and an upper bound explicitly characterize an HN controller of

lower dimensions. Furthermore, the bilinear transformation has been used to the design to prevent the pole-zero cancellation of the poorly damped

poles and to improve the control system performance. The proposed technique is illustrated with applications to the design of stabilizer for a multi-

machine power system. Simulation results under various operation conditions are given which show that the proposed HPSS damps the low-

frequency oscillation in an efficient manner.
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1. Introduction

Power systems are complex non-linear systems and often

exhibit low-frequency electromechanical oscillations due to

insufficient damping caused by adverse operating conditions.

Power system stabilizer (PSS) units have long been regarded as

an effective way to enhance the damping of electromechanical

oscillations in power system [1]. As a supplementary control to

provide extra damping for synchronous generators, power

system stabilizer (PSS) have been widely used in the electric

power industry. Studies have shown that a well-tuned PSS can

improve power system dynamic stability effectively. Over the

past two decades, various control methods have been proposed

for PSS design to improve overall system performance. Among

these, conventional PSS of the lead-lag compensation type

[1,2] have been adopted by most utility companies because of

their simple structure, flexibility and easy of implementation.

However, the performance of these stabilizers can be

considerably degraded with the changes in the operating

condition during normal operation. Most methods developed in

recent years are based on well-developed modern control

theory. These include: pole assignment [3–6], optimal control

[7], self-tuning and adaptive control [6], variable structure

control [8,9], rule-based and neural network based control

[10–12]. The reduced order techniques [13,14] have been

applied to the PSS design problem. The first one based on the

LQR technique and the second one based on the iterative

perturbation scheme. One of the principal disadvantages of

these methods themselves is the lack of robustness.

In recent years, the standard HN control problem has

received increasing attention: for a given g O0, find all

controllers such as that the HN norm of the closed-loop transfer

function is less than g [21]. Practical power systems with PSS

must be robust over a wide range of operating conditions. The

developed HN and related design methods lead to a fixed-

structure and fixed-parameter, yet robust controller. Some

research on applying HN methods to PSS design is also

presented in some publications [15–20] where the importance

and the difficulties in the selection of weighting functions are

reported. And also, the standard optimal HN control method is

known to obtain controllers of the same order as that of the

open loop system [21]. Sufficient conditions in the form of two

algebraic Riccati equations (AREs) and an upper bound

explicitly characterize an HN output feedback controller of

lower dimensions.

In this paper, we present a robust reduced-order controller

based power system stabilizer design to improve the damping

oscillation in power systems. Then, the bilinear transformation

is applied to the plant model to prevent the pole-zero
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cancellation and to deal with the ill conditioning problems that

arise in the design process. The design method is implemented

to a multi- machine power system. The performance of the

proposed controller is examined and compared with both the

CPSS and the standard HN PSS (standard HPSS). Thus, the

design of the proposed controller is simple and it is easy to

implement.

The rest of the paper is organized as follows. A detailed

description of the proposed design procedure is given in

Section 2. The studied power system is given in Section 3.

Simulation results are presented in Section 4 to demonstrate the

effectiveness of the proposed method. Conclusions are drawn

in Section 5.

2. The proposed controller design

2.1. Problem statements

Let us consider a linear system described by the state-space

equations of the following form,

_x Z Ax CBu (1)

y Z Cx CDu

where x2Rn the state, u2Rm the control signal, y2Rq the

output signal; and A, B, C and D are real matrices of

appropriate dimensions. It is further assumed that given system

is stabilizable and detectable, i.e. minimal [21].

We are interested in designing a dynamic output feedback

controller of the form

_xK Z AKxK CBKy (2)

v Z CKxK

where xK2Rr the state, n2Rm the output signal for the

controller; AK, BK and CK are real matrices of the appropriate

dimensions.

The model-order reduction problem consists of approxi-

mating a high-order system G by lower-order system Gr

according to some given criterion. The structure of the overall

system is given in Fig. 1, where Gr is reduced-order model, Gg0

the modeling error and GK the desired controller. The reduced-

order model is unique from the input–output behavior point of

view. As it is assumed that the stable part is an upper bounded,

i.e. jjGg0
jjN%g0, therefore, HN-control tools can be used to

find a stabilizing controller. Here the standard definition for

HN-norm is given by

jjGg0
jjN Z supusmax½GðjuÞKGrðjuÞ� (3)

where smax($) is the maximum singular value.

2.2. Reduced-order model formulation

One way of obtaining a low order controller is to work with

a low order system (plant). The standard optimal HN control

method is known to obtain controllers of the same order as that

of the open loop system. Thus, if the full model of the system is

used, the optimal HN controller order will be unacceptably

high. In order to reduce the order of the controller, we make use

of the method of balanced truncation. We will present a brief

outline of this procedure. The details of the balanced truncation

algorithm can be found in [23–25].

Let (A,B,C,D) be an nth order stable system, but not

necessarily minimal, state-space realization of the transfer

function GðsÞZDCCðsIKAÞK1B. The controllability and

observability Grammians are defined as:

�P Z

ðN
0

eAtBBT eAT tdt (4)

�Q Z

ðN
0

eAT tCT CeAtdt

The Hankel singular values S are defined as SZ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lðPQÞ

p
where lðPQÞdenotes the eigenvalue of PQ. Let �T be a

transformation for balanced realization with xðtÞZ �Txb. Then

the state space of balanced system can be expressed as:

_xb Z Abxb CBbu (5)

yb Z Cbxb CDbu

We partition the state vector xb into two parts [xb1 xb2]T where

xb2 is the vector of the states that we wish to eliminate. Thus,

Eq. (5) becomes:

_xb1

_xb2

" #
Z

Ab11 Ab12

Ab21 Ab22

" #
xb1

xb2

� �
C

Bb1

Bb2

" #
u (6)

yb Z Cb1 Cb2

� 	 xb1

xb2

� �
CDbu

The controllability and observability Grammians of the

balanced truncation system are diagonal and satisfy the

following equation:

Ab11 Ab12

Ab21 Ab22

" #
SCS

Ab11 Ab12

Ab21 Ab22

" #T

C
Bb1BT

b1 Bb1BT
b2

Bb2BT
b1 Bb2BT

b2

" #
Z0

(7)
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Fig. 1. Configuration of the closed-loop system.
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