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a b s t r a c t

Power grids are vulnerable to cascading failures, as shown by previous blackouts or major system distur-
bances. Line outages due to overload are often the main contributors to the cascading failures leading to
these undesired situations. Indeed, the more a line is overloaded, the larger is its sagging, and hence the
probability that it will be tripped. It is necessary to quantify in a realistic way the probability of trip as a
function of the load in order to compute a good estimation of the frequency of dangerous cascading
outages. Several models were proposed for this purpose, but none of them is backed up by empirical evi-
dence or detailed analysis. This paper studies factors that could affect the probability of trip as a function
of load, and it computes this probability for two different test systems using a temperature simulation
based methodology, called dynamic PRA level-I analysis. This paper then compares existing modelings
of this probability to these results. This comparison shows that all modelings used in the literature are
not always convenient. We finally propose a simple model that can be adopted in probabilistic risk
assessment of cascading failures.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Analysis of previous blackouts or major system disturbances
showed that line outages due to overload are often the main con-
tributors to the cascading failures leading to these undesired situ-
ations. The most famous example is the blackout which occurred
on August 14, 2003 in the Northeastern area of the United States
and in the Southeastern area of the Canada, where about twenty
lines tripped due to short circuit with ground [1]. Indeed, each of
these lines sagged low enough to contact something below it, even
if two of them were not overloaded. As the load on other lines can
increase after the loss of an element, their failure probabilities can
increase due to thermal effects increasing their sag. If another line
trips, this effect is increased, possibly leading to a cascading failure.
Therefore, it is crucial to include the dependency of the probability
of trip to the load going through the line in a cascading failures
modeling. We should however note that the probability of a fault
depends not only on this load current but also on the weather
(ambient temperature, wind speed, . . .), on the vegetation height,
on operators corrective actions, etc.

Several models were proposed for the probability of trip as a
function of the load, based on the assumption that the more a line
is overloaded, the larger is its sagging, and hence the probability
that it will be tripped [2–5]. But this assumption imposes only that

the probability should be a monotonically increasing function of
the load, and proposed models differ by the shape of this function.
None of them is backed up by empirical evidence or detailed anal-
ysis. A decomposition in two levels of the Probabilistic Risk
Assessment (PRA) of cascading failures in transmission power sys-
tems is presented in [6]. The level-I analyzes the first phase of cas-
cading failures leading to blackouts, the slow cascade ruled by
thermal failures, on the basis of the physical evolution of lines’
sag. The first aim of this paper is to compare existing modeling
of the probability of trip as a function of the load to results given
by a dynamic PRA level-I analysis. The comparison is performed
for two different power systems. Two different operators correc-
tive actions models are used for the smallest power system. The
second aim of this paper is to propose a simple model that can
be adopted in PRA of cascading failures based on this analysis.

Consequently, Section ‘State of the art’ presents existing models
and Section ‘Physical bases’ presents theoretical basis. We will
then apply the level-I of blackout PRA to two test cases in Sectio
n ‘Numerical results’ analyzes the results. Finally, conclusions are
presented in Section ‘Conclusions’.

State of the art

Two different kinds of studies about probability of line tripping
are interesting to discuss in this paper. First, methodologies devel-
oped to study cascading failures use various model for the proba-
bility of trip as a function of the load. They are discussed in
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Section ‘Cascading failures methodologies’. Secondly, probabilistic
methods to assess thermal capacity of lines based on the risk study
also the probability to have a flash-over to the ground in function
of the load. They are presented in Section ‘Increasing thermal rat-
ing by risk analysis’.

Cascading failures methodologies

Introduction
In a cascading failure leading to a major system disturbance,

there is a strong coupling between events. In particular, the loss
of an element can overload other lines. The temperature of an over-
loaded line starts then to increase, thus increasing its sag, which
may finally be so high that a short-circuit with the ground towards
trees may occur and cause the line trip. If we denote by Ti the event
‘‘Trip of the line i’’, the frequency Fr of the dangerous sequence
T1; . . . ; Tn (i.e. successive trips of lines 1; . . . ;n) can be calculated by

FrðT1; . . . ; TnÞ ¼ FrðT1Þ
Yn

i¼2

pðTijT1; . . . ; Ti�1Þ; ð1Þ

where pðTijT1; . . . ; Ti�1Þ is the conditional probability of the trip of
the line i, knowing that lines 1; . . . ; i� 1 tripped. Due to the strong
coupling between events in a cascading failure, the conditional
probabilities can strongly differ from the marginals ones,

pðTijT1; . . . ; Ti�1Þ– pðTiÞ; ð2Þ

so it is crucial to have a good approximation of these probabilities in
order to obtain a realistic estimation of the risk of blackout.

In a general way, conditional probabilities pðTijT1; . . . ; Ti�1Þ
depends on several factors: the load of the line i, the weather
(ambient temperature, wind speed, . . .), on the vegetation height
and on operators corrective actions. Operators correctives actions
themselves rely not only on the state of the power system, but also
on the information infrastructure. However, taking into account all
these factors in a blackout PRA is complex. Therefore, several mod-
els trying to estimate vulnerabilities of a power system to cascad-
ing outages use conditional probabilities as a function only of the
load of the concerned line,

pðTijT1; . . . ; Ti�1Þ � pðTijIiðT1; . . . ; Ti�1ÞÞ; ð3Þ

where IiðT1; . . . ; Ti�1Þ is the current in line i after the trip of the lines
1; . . . ; i� 1. The Eq. (1) then becomes

FrðT1; . . . ; TnÞ ¼ FrðT1Þ
Yn

i¼2

pðTijIiðT1; . . . ; Ti�1ÞÞ: ð4Þ

The assumption that the probability of line tripping in function of
reduced load (actual load divided by thermal capacity) is the same
for all lines is often made as an additional approximation. If we
denote by PðxÞ the probability of line tripping when the reduced
load is x, the frequency of a dangerous scenario is simply given by

FrðT1; . . . ; TnÞ ¼ FrðT1Þ
Yn

i¼2

P½xiðT1; . . . ; Ti�1Þ�: ð5Þ

In a general way, a line tripping can have two origins:

� The thermal expansion can result in the line dropping beneath
its safety clearance, which may cause a flashover to the ground
with a probability PthðxÞ. If we assume that the more a line is
overloaded, the larger is its sagging, and hence the probability
that it will be tripped,
� A failure independent of the load (e.g. mechanical failure), with

a probability Pind.

The total probability of line tripping is then given by

PðxÞ ¼ Pind þ PthðxÞ½1� Pind� ð6Þ

The load in each line after each loss can be easily computed through
a power flow calculation. The problem in this simplified model is
then to know the function PðxÞ, or, equivalently, PthðxÞ. Several mod-
els were proposed for this, based on the assumption that the more a
line is overloaded, the larger is its sagging, and hence the probabil-
ity that it will be tripped. But this assumption imposes only that the
probability PthðxÞ has the properties of a cumulative distribution
function (cdf). Indeed, there is thus a ‘‘critical load’’ of the line over
which the line will trip (the probability PthðxÞ is in a monotonically
increasing function of the load). Let Xc be the random variable
describing this critical reduced load and FXc ðxÞ its cumulative distri-
bution function. We can write

PthðxÞ ¼ Pr½Xc 6 x� ¼ FXc ðxÞ; ð7Þ

which means that PthðxÞ has to be fit by a cdf. Proposed models dif-
fer by the shape of this function PthðxÞ. We present in this
Section three different models.

Exponential model
In [2], Nedic presents a model to simulate large system distur-

bances (a variant of the Manchester model). One of the phenomena
modeled is the possible line outages due to overloads. The pro-
posed approach rely an the additional assumption that only if a
line is overloaded it can sag beyond the specified limits (i.e. if a line
is not overloaded its tripping probability due to sagging is equal to
zero). The probabilistic function used for this purposed is shown in
Fig. 1. This function is equal to zero when the reduced load is lower
than 1, has an exponential evolution when the reduced load is
between 1 and 1.5 and is equal to a constant value p2 when the
reduced load is larger than 1.5.

Linear model
Zima and Andersson assumed in [3] that the probability will

rather follow a curve show in Fig. 2: the probability is equal to zero
for a reduced load lower than 1, has a linear evolution when the
reduced load is between 1 and k and is equal to 1 when the
reduced load is larger than k. Such a function is inspired by [7]
where a similar behavior is proposed to describe a probability of
the incorrect tripping of a line exposed to a hidden failure (i.e. a
relay malfunction which entails the trip of a ‘‘healthy’’ line).
However, the probability function used in [7] is not equal to zero
for a load below the line limit, but is equal to a constant low value.
Computations in [3] are based on k ¼ 1:4, as in [7].

Normal cdf model
In [4,5], another kind of model is proposed, as shown in Fig. 3. It

is assumed that when a line loading increases above its limit, the
probability of line tripping increases and eventually flatten out to

Fig. 1. Line overload modeling. From [2].
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