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a b s t r a c t

This paper describes a new method for state estimation of a non-linear AC power system in a
non-iterative manner. This method is based on the Kipnis–Shamir relinearization technique that is used
to solve over-defined sets of polynomial equations. The technique transforms the equations to a higher
dimensional linear space which allows the states to be solved in a non-iterative manner. Given accurate
measurements, this new state estimation method provides the same results as traditional iterative state
estimation methods, and the proposed method does not require an initial guess of system states nor does
it have issues with convergence.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Since its introduction in the late 1960s [1], power system state
estimation has become an integral part of power system monitor-
ing and operation. Because state estimation for alternating current
(AC) power systems is a non-linear problem, traditionally state
estimation has been solved using iterative methods such as the
weighted least-squares with Gauss–Newton iterations [2,3].
Iterative methods have worked well for the state estimator appli-
cation, but these methods require an initial guess and may run into
convergence issues if the initial guess is too far away from the
actual system states [4].

This paper describes a new method for solving the state estima-
tion problem of a non-linear AC power system in a non-iterative
manner when given an adequate set of measurements [5–8].
There are other methods to solve the state estimation problem
[9,10] and the related power flow problem [11,12] in a
non-iterative manner by using linearized measurement functions
and having some way to compensate for the linearized model. In
contrast, the method proposed in this paper is based on the
Kipnis–Shamir relinearization technique that is used to solve

over-determined systems of polynomial equations [13]. In the
proposed method, the measurement equations, which are the
bus voltage magnitude, line power flow, and bus power injection
equations, are formulated using rectangular representation of the
bus voltages. With this formulation, the non-linear measurement
equations become quadratic polynomials of the voltage variables.
The method then uses two transformations to change the original
system into a larger system to solve for the quadratic variables in a
non-iterative manner. This new method provides the same results
as the weighted least-squares method when given accurate mea-
surements, and does not require an initial guess or have issues
with solution convergence.

The main contributions of this paper are:

1. a comprehensive development of the algorithm needed for this
non-iterative method, as shown in Fig. 1, including techniques
to reduce computation time, and

2. an assessment of this non-iterative method as compared to the
conventional iterative state estimator solution.

The remainder of this paper is organized into five sections. Se
ction ‘Non-iterative state estimation method’ provides a descrip-
tion of the non-iterative state estimation solution process.
Section ‘A simple example’ presents a simple example to demon-
strate the mechanics of the solution method. Section ‘Observabilit
y requirements’ discusses the observability requirements of the
proposed method. Section ‘Performance test results’ shows the
performance test results of the proposed method, both for
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computation time and for solution accuracy when there are mea-
surement errors. Finally, Section ‘Summary and future work’ pro-
vides a summary and lists some future work to be done on this
research topic.

Non-iterative state estimation method

This section describes the non-iterative state estimation
method. The inputs needed by the method are the system topology
and parameter information and measurements from the system.

Formulating measurement equations

In the method, the measurement equations are formulated
using rectangular representation of the bus voltage phasors, i.e.,
Vi ¼ ViR þ jV iI , such that the equations become quadratic polyno-
mials in terms of these real and imaginary bus voltage compo-
nents. If the transmission line parameters are expressed using
the p-model shown in Fig. 2, then the measurement equations are:

(a) Bus magnitude measurements

V2
iM ¼ V2

iR þ V2
iI ð1Þ

where ViM is the magnitude of the voltage at Bus i.
(b) Line active (P) and reactive (Q) power flow equations

Pij ¼ gijðV2
iR þ V2

iI � ViRVjR � ViIVjIÞ þ hijðViIVjR � ViRVjIÞ
Q ij ¼ hijðV2

iR þ V2
iI � ViRVjR � ViIVjIÞ þ gijðViRVjI � ViIVjRÞ

� Bs

2
ðV2

iR þ V2
iIÞ

gij ¼
Rij

Z2
ij

; hij ¼
Xij

Z2
ij

; Z2
ij ¼ R2

ij þ X2
ij

ð2Þ

where Bus i is the from bus and Bus j is the to bus, and
Rij, Xij, Bs are the line resistance, reactance, and shunt suscep-
tance, respectively.

(c) Bus power injection equations are formulated by adding
together all of the line flow equations that are going out of
the bus plus the power flowing into any external shunt
conductance G or susceptance B connected to the bus (e.g.,
a shunt capacitor or reactor on a bus):

P ¼
X

Pij þ GðV2
iR þ V2

iIÞ

Q ¼
X

Qij � BðV2
iR þ V2

iIÞ
ð3Þ

where j is the set of buses connected to Bus i.
Because these equations are linear with respect to the quadratic

voltage terms (V2
iR;V

2
iI;ViRVjR, etc.), the equations can be put into

the matrix form

Ann ¼ C ð4Þ

where C is the vector of measurement values, n is vector of quadra-
tic voltage variables, and An is the coefficient matrix for n. The vector
n consists of quadratic variables of the real and imaginary parts of
the voltages, which are denoted by xixj, where the indices i and j
are not related to the bus numbers.

Line shunt conductance, non-unity transformer tap ratios and
phase shifters can be added to the transmission line model. The
resulting measurement equations will be more complex, but they
are still quadratic polynomials of the voltage components.

Partitioning An and first transformation

A re-ordering of variables is performed and the system (4) is
rearranged into

A B½ �
Y

Z

� �
¼ C ð5Þ

where A contains the linearly independent columns of An, B contains
the remaining columns of An, Y is the vector of elements of n corre-
sponding to A, and Z is the vector of elements of n corresponding to B.

The quadratic variables xixj in Y are renamed to y1; y2; . . . ; yNy
in

the order they appear, and Ny is the total number of Y variables.
The quadratic variables xixj in Z are renamed z1; z2; . . . ; zNz in the
order they appear, and Nz is the total number of Z variables.

In addition, all quadratic variables containing the reference bus
imaginary component and their corresponding columns in the
matrices are eliminated from the system because the reference
bus imaginary component is set to zero. In a software implementa-
tion, the partitioning process can be reliably performed by using
QR decomposition [6] on An.

With the rearranged system, the Y variables can now be
expressed in terms of the Z variables and the measurement values
C as

Y ¼ dþ DZ

d ¼ AT A
� ��1

AT C; D ¼ � AT A
� ��1

AT B
ð6Þ

Fig. 1. Non-iterative state estimation method flow chart.

Fig. 2. Standard transmission line p-model.
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