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a b s t r a c t

A day-ahead voltage stability constrained dynamic optimal reactive power flow (VSC-DORPF) model is
proposed in this paper. The amount of dynamic reactive power reserves (DRPR) is used as a measure
of voltage stability of power system. The effective dynamic reactive power reserves (EDRPR) of reactive
power sources are calculated to obtain DRPR of each area and the maximum variations in reactive power
generation under contingency are taken as the required minimal DRPR for each area. Then the DRPR are
introduced into the VSC-DORPF model as one of multiple objective functions and constraints in order to
enhance the voltage stability of power system. A hybrid method, integrated by branch-bound method
and primal–dual interior point (PDIP) method, is proposed to solve this VSC-DORPF problem. The discrete
control variables and the time coupled constraints are handled by the proposed branching and pruning
principles. As a result, the VSC-DORPF problem is decomposed into a series of optimal reactive power
flow (ORPF) problems with continuous control variables only. Numerical tests with IEEE 30-bus system
and IEEE 118-bus system show that the proposed model and method are effective.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

Dynamic optimal reactive power flow (DORPF) determines the
proper settings of reactive power control devices in next day based
on the day-ahead load forecast and active power scheduling plan in
order to reduce the daily network losses, enhance voltage profile
and avoid excessive operation.

As voltage stability has not been taken into account in the gen-
eral DORPF model, the scheduling results cannot respond to the
impact which acute load fluctuation bring to power system. A
fuzzy membership function of bus voltage was taken as one of
optimization objectives to increase voltage quality in [1].
However, keeping bus voltages within qualified ranges simply
cannot maintain voltage stability. Thus it is necessary to carry
out further researches on DORPF considering voltage stability.
Dynamic reactive power reserves (DRPR) have always been linked
with voltage stability as they have a significant effect on the reli-
able operation of power system [2]. In [3] an optimal reactive
power flow (ORPF) model with DRPR of power system being one
of objective functions was proposed. It is worth noting that since
each reactive power source gives a different impact on the entire

system, DRPR of large system cannot be obtained by merely sum-
ming up individual reserves. Thus the network was partitioned
into several areas and the reactive power sources were assigned
weighting factors based on the reactive power load margin of each
area in [3]. But it is unreasonable to give the same factors to the
reactive power sources in an area. Moreover, it cannot be guaran-
teed that there are sufficient DRPR in each area to maintain voltage
stability merely by the weighted sum of individual reserves in
objective functions without any explicit constraints.

On the other hand, DORPF problem is essentially a large scale
mixed integer nonlinear programming problem. The presence of
a large number of discrete control variables and time coupled con-
straints makes it difficult to solve. Different methods have been
proposed and they can be classified basically into four categories.
(1) Simultaneous solution method [4]. The operation limits of con-
trol devices are described by the analytic mathematic expressions
of their control variables. The DORPF problem is solved as a whole
and the discrete control variables achieve their discrete values by
an embedded algorithm. Although this method usually shows good
performance on small test systems, its application on larger power
system will be hard. (2) Modern intelligent algorithm [1,5]. The
control variables in the whole day are encoded into an individual
and a modern intelligent algorithm is adopted to solve the prob-
lem. This kind of algorithm cannot be put into practical application
because of its stochastic nature. (3) Decomposition coordination
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method [6,7]. The entire problem is decomposed into two
sub-problems with only continuous control variables or discrete
control variables respectively which interact through a coordina-
tion technology. But the independent solution of continuous and
discrete variables will lead to a deviation in the search path of
solution. (4) Heuristic algorithm [8,9]. The dynamic problem is
converted to a series of static ones by determining an operation
sequence of each control device by some heuristic rules.
However, it is difficult to achieve reasonable settings of control
devices by the assumed operation time.

In view of the above, a new DORPF model considering voltage
stability is presented in this paper. The DRPR are taken as an index
of voltage stability and they appeared in both optimization objec-
tive functions and constraints of the proposed model. It can reduce
daily network losses, improve voltage quality and enhance voltage
stability of power system. On the other hand, considering the two
difficulties in solving DORPF problem are both related to discrete
control variables, a hybrid method combined by branch-bound
method and primal–dual interior point (PDIP) method is adopted
to solve the problem. Branch-bound method [10] is used to solve
integer programming problem and PDIP method [11] is used to
solve nonlinear programming problem. The two methods are often
integrated together to solve mixed integer nonlinear programming
problem, such as ORPF [12,13] and unit commitment [14]. During
the solution process of DORPF problem, the discrete control
variables achieve discrete values via a branch-bound tree and the
time coupled constraints are met by reasonable branching and
pruning principles. Numerical tests with IEEE 30 and 118-bus
system show that the proposed model and method are effective.

The problem formulation of VSC-DORPF

In this paper, daily active power losses, voltage deviation and
DRPR of power system are taken as objective functions to reduce
network losses, improve voltage quality and voltage stability. The
DRPR of each area are kept larger than their required values in
constraints for the purpose of mitigating voltage collapse. The
proposed VSC-DORPF model can be presented as follows.

Objective functions
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where NT is the number of intervals, NB and NG are the number of
buses and generators, x1, x2 and x3 are the weighting factors of
optimization objectives, the first objective component is daily net-
work losses, Pt

loss is the active power losses at interval t, the second
component is voltage deviation, Vt

i is the voltage magnitude of bus i
at interval t, Vi;set is the expected voltage magnitude of bus i, the
third component is DRPR of power system, Qt

g;j and Qt
g;j;eff are the

reactive power output and its effective limit of generator j at
interval t, f t

1, f t
2 and f t

3 are the optimal value of each optimization
objective when optimized only at interval t respectively.

Constraints

1. Power flow equations

gtðxtÞ ¼ 0 t ¼ 1; . . . ;NT ð2Þ

2. Operation constraints

Vi;min 6 Vt
i 6 Vi;max i ¼ 1; . . . ;NB; t ¼ 1; . . . ;NT ð3Þ

3. The constraints of DRPR for each area
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4. The constraints of control variables

Q g;i;min 6 Q t
g;i 6 Q g;i;max i ¼ 1; . . . ;NG; t ¼ 1; . . . ;NT ð5Þ

Ki;min 6 Kt
i 6 Ki;max i ¼ 1; . . . ;NK ; t ¼ 1; . . . ;NT ð6Þ

Q c;i;min 6 Q t
c;i 6 Qc;i;max i ¼ 1; . . . ;Nc; t ¼ 1; . . . ;NT ð7Þ

5. Time coupled constraints

Constrains of maximum allowable action range between
successive intervals:

jKt
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Constrains of maximum allowable action number in a day:
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where Vi;max and Vi;min are voltage limits of bus i, Qg;i;max and
Qg;i;min are reactive power limits of generator i, NK and NC are

the number of transformers and compensators, Qt
c;i, Qc;i;max,

Qc;i;min and Qc;i;step are the reactive power compensation, its

limits and step size of compensator i at interval t, Kt
i , Ki;max,

Ki;min and Ki;step are the ratio, its limits and step size of trans-
former i at interval t, xt is the vector of control variables and
state variables at interval t, Narea is the number of areas, NG;k

is the number of generators in area k, Qt
rs;k;min is the required

DRPR for area k at interval t, Sk;i;D, SQc;i;D, Sk;i;max and SQc;i;max are
maximum allowable action range between successive inter-
vals and maximum allowable action number in a day of
transformer i and compensator i respectively.

Fig. 1. VQ curve.
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