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a b s t r a c t

In this paper, a new saturated control design for uncertain power systems is proposed. The developed
saturated control scheme is based on linear matrix inequality (LMI) optimization to achieve prescribed
dynamic performance measures, e.g., settling time and damping ratio. In this design, the closed-loop
poles are forced to lie within a desired region. The proposed design provides robustness against system
uncertainties. The simulation results of both a single machine infinite bus and a multi-machine power
systems are given to validate the effectiveness of the proposed controller.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

LARGE Power system stability enhancement is of great
importance, since if stability is lost, power separation and collapse
may occur and negative consequences may be brought to the
national economy. Generators are usually equipped with
thyristor-controlled static exciter due to its rapidity, and high reli-
ability. The terminal voltage deviation from a reference value is
used to regulate the terminal voltage of generators using propor-
tional (P) or proportional integral derivative (PID) control-termed
automatic voltage regulator AVR. However, the AVR may have an
adverse effect on system stability for large closed-loop gains of
the excitation channel. This problem is solved by injecting an addi-
tional stabilizing signal generated by power system stabilizers
(PSS) whose input is usually the speed deviation of the generator.
Many PSS designs exist in the following references and references
therein. A single or double lead stage control using frequency
response and root locus methods are presented in [1,2]. The work
in [3] provides coordinated design of AVR-PSS. Linear optimal con-
trol is reported in [4]. Robust control to consider the uncertainty
due to load variations is presented [5–8]. In [9], resilient control
is proposed to cope with uncertainties due to both load variations

and controller parameters errors. Further stability enhancement is
achieved by making use of flexible AC transmission systems
(FACTS) devices [10], presents reliable (fault-tolerant) stabilization
to consider the case of failure of either PSS or FACTS controllers.
Intelligent PSSs based on evolutionary techniques to enhance the
system response over a wide range of operating points have been
proposed, e.g. [11–13].

Industrial control systems always have limitations on the
amplitudes of control inputs due to saturation characteristics of
actuators. These limitations may cause serious deterioration of
control performances and even destroy the stability of the systems.
Hence, the topic of designing control systems that maintain stabil-
ity and desired performance in the presence of the saturation con-
straint is a topic of utmost practical interest, e.g. the excitation
control of power systems [14,15]. Moreover, these plants are also
subject to uncertainties due to parameter variations or
un-modeled dynamics. None of the above mentioned references
tackles the design of PSS taking into consideration the limitation
on its output control signal. However, in [16] a procedure is devel-
oped to estimate the stability region of PSS subject to actuator sat-
uration. A multi-objective optimization model is presented to
estimate the practical stability region for a small-signal power
system dynamic model with saturation nonlinearities [17]. The
saturated excitation control of multi-machine multi-load power
systems using a Hamiltonian function approach is presented in
[18].

Many control design approaches dealing with saturating control
are available in the literature, e.g. [19,20] and the references
therein. One of these approaches is the positive invariance. This
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technique is based on the design of controllers that work inside a
region of linear behavior where saturation does not occur. In other
words, the positive invariance approach is based on constraint
avoidance to prevent the saturation in the closed-loop system
and as a result a region of linear behavior of the system is
maintained [21–23]. Another design approach, however, allows
saturation to take place and asymptotic stability is guaranteed as
well [24–29]. Several works extend the last approach to deal with
different kind of problems encountered in the literature as the
magnitude and rate constraints [30,31]. Other designs of saturated
control such as L1 optimization, the small and high gain, and model
predictive control have been reported in [32–34].

One of the most important problems in control design is the
robust asymptotic stability (i.e. asymptotic stability against all
admissible uncertainties). Several techniques are available for
linear systems affected by time-invariant uncertainty. Without
considering the controller’s saturation, most of these methods cast
the uncertainty in polytopic [35,36] or in norm-bounded forms
[37] and provide LMI-based sufficient conditions for robust stabil-
ity. To achieve a prescribed dynamic behavior in the presence of
system uncertainties and saturation of the control signal, robust
pole assignment with saturated control is proposed in [38,39]. In
such approach, the LMI regional pole assignment is connected to
positive invariance methods to synthesize stabilizing state feed-
back controllers ensuring regions of desired closed-loop poles
together while avoiding the saturation. The positive invariance
technique is used in this work because it provides simple methods
to calculate stabilizing feedback controllers and it can deal with
non-symmetrical constraints as well.

In this paper, a new approach is presented to design a saturating
PSS for uncertain systems. In this new approach, the control
signal is allowed to saturate while guaranteeing asymptotic stabil-
ity to a bounded, ellipsoidal and symmetric region obtained by the
solution of a set of LMIs. The main challenge in this approach is to
obtain a large enough domain of initial states that ensures asymp-
totic stability for the system despite the presence of saturations. To
get around this problem, linearization of the nonlinear saturation
function is introduced.

The objective of the present work is to design a state feedback
robust regional pole placement controller that copes with control
signal saturation constraints and system uncertainties. In order
to design the aforementioned controller, a convex optimization
problem is formulated using the LMI method. The rest of the paper
is organized as follows; Mathematical notations and problem
formulation are given in Section ‘Mathematical notations and
problem formulation’. The problem solution is presented in
Section ‘Problem solution’, while Section ‘Saturated PSS with
regional pole placement’ presents simulation results of a single
machine infinite bus system (SMIB) and a multi-machine system.
Conclusion is given in Section ‘Conclusion’.

Mathematical notations and problem formulation

The Rn and Rn�m denote, respectively, the n-dimensional
Euclidean space and the set of n �m real matrices. In the sequel,
W0, W�1, and kWk denote respectively the transpose, the inverse,
and the induced norm of any square matrix W. The notation
W > 0, W < 0 is used to denote a symmetric positive (negative)
definite matrix W; I denotes the identity matrix of appropriate
dimension. The symbol � is as an ellipsis for terms in matrix expres-
sions that are induced by symmetry e.g.

Lþ ðW þ N þW 0 þ N0Þ N

N0 M

� �
¼

Lþ ðW þ N þdÞ N

d M

� �

The following facts will be used throughout the paper [40].

Fact 1. The congruence transformation z0Wz does not change the
definiteness of W.

Fact 2. For any real matrices W1, DðtÞ, and W2 of appropriate dimen-
sions, it follows that

W1DðtÞW2 þd 6 eW1W 0
1 þ e�1W 0

2W2; e > 0

where DðtÞ represents system uncertainties with bounded norm

kDðtÞk < 1() D0D < 1

The usefulness of this fact is in removing uncertainty.

Fact 3 (Schur complement). This fact is used to transform a nonlinear
matrix inequality to a linear one. Given constant matrices W1, W2, W3

where W1 = W0
1, and 0 < W2 = W0

2. Then

W1 þW 0
3W�1

2 W3 < 0()
W1 d

W3 �W2

� �
< 0

Now the problem in hand can be formulated as follows. Consider the
following uncertain system:

_x ¼ ðAþ DAÞxþ Bu; xð0Þ ¼ xo ð1Þ

where A 2 Rn�n and B 2 Rn�m are known real constant matrices that
describe the nominal system. The matrix DA is real; time varying
matrix functions representing the norm bounded parameter uncertain-
ties and is given by:

DAðtÞ ¼ MDðtÞN; kDðtÞk < 1

where M, and N are known real constant matrices, with D(t) being an
unknown, time-varying matrix function. It is worth mentioning that
D(t) can represent system uncertainties, unmodeled dynamics, and/or
nonlinearities. The pair (A,B) is assumed to be controllable. The
saturation control, Fig. 1, is assumed to be of the state feedback form,
symmetry and normalized as defined:

u ¼ Fx; �1 < uj < þ1; j ¼ 1 . . . m

or

satðujÞ ¼
1; if uj P 1
uj; if � 1 < uj < 1; j ¼ 1 . . . m

�1; if uj 6 �1

8><
>: ð2Þ

The problem can be stated as follows: design a controller in the form of
(2) for the system given in (1). The saturation controller to be designed
is the one that achieves prescribed dynamic performance by forcing the
closed-loop poles to lie in a specified region. To achieve a desired
dynamic performance, specified by a minimum damping ratio fmin,
and a maximum settling time Ts (or equivalently r = 4/Ts), the
closed-loop poles should lie within the disc D(q, r) with center (�q,0)
and radius r as shown in Fig. 2. This is termed as D-stability in which
the poles must lie inside d for all admissible uncertainties. Note that
r is called the degree of stability, or relative stability. The pole
placement in a circular region is an adequate practical constraint to
achieve good transient response for uncertain systems.
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Fig. 1. Feedback system with saturated control.
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