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a b s t r a c t

Two concepts are proposed to characterize the behavior of stochastic systems under sustained random
perturbations in time: Using Lyapunov exponents we define the region where an electric power system
can be operated under random perturbations without losing stability; and we characterize the maximum
perturbation size that a system can sustain. The proposed methodology is applied to international test
systems of nine and thirty-nine buses.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

In their daily operation, electric power systems are subjected to
a variety of random perturbations sustained in time, due to the
dynamic behavior of consumption, temperature changes in the
wires, errors in the measuring instruments, changes in the net-
work’s topology, etc. Therefore, the randomness is present at all
times, and it is necessary to represent it as faithfully as possible
to capture the stochastic behavior of real systems.

Traditionally, there have been attempts from probabilistic the-
ory to analyze the stochastic dynamics of electric systems, orient-
ing the study to the analysis of contingencies and safety, see [1],
where the objective consists in assigning an occurrence probability
to a set of predefined events. Then, the probability that the system
will be stable is estimated from the probability distributions of the
elements that represent the random behavior.

In the context of dynamic stability, Refs. [2–4] analyze small
signal stability, assigning a probability value to the occurrence of
certain events. In [5] it is considered that consumption varies per-
manently in time, and an index is presented that allows the deter-
mination of the vulnerability of a system in studies of voltage
collapse from the time at which the system abandons the stability
region.

With respect to the probabilistic analysis of stability of small
perturbations, Refs. [6–12] show important advances in this area,

but the random effect is considered according to a stepwise type
of event, and the sustained variation in time is not considered.
To account for the above, Ref. [13] shows a theoretical develop-
ment based on Lyapunov exponents that allow the characterization
of the random phenomenon in electric power systems. However,
no numerical methods are presented for implementation in real
systems. In [14] numerical methods are reported to evaluate stabil-
ity in mechanical systems by means of Lyapunov exponents, but
the results shown cannot be extrapolated to large systems such
as electric power systems.

In the context of the model of random variations sustained in
time, white noise or Brownian motion, see [15], has been used to
represent the stochastic dynamics of electric systems. However,
this process is adequate for applications at the microscopic level,
and it is not a correct approximation to represent the macroscopic
phenomena existing in electric networks.

The present paper models the random perturbations sustained
in time which affect electric power systems, according to a partic-
ular stochastic process reported in [16]. It also proposes to use Lya-
punov exponents and the gains of the PSS controllers, to
characterize the stability of electric systems, defining the stability
region and stability radius of a system subjected to random pertur-
bations sustained in time.

The proposed methodology is applied to two IEEE test systems:
the three generator – nine bus and the ten generator – thirty-nine
bus systems. The rest of the paper is organized as follows: Sec-
tion ‘Literature review’ presents the mathematical model of linear
stochastic systems and the concept of Lyapunov exponents. Sec-
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tion ‘Model of the system’ introduces two indicators in order to
characterize random perturbations in power system operation
and presents a methodology for numerical estimation. Finally, in
Section ‘Methods’ the proposed methodology is applied to two
examples of multimachine power systems, highlighting the poten-
tial applications of the presented concepts.

Literature review

Different authors have made valuable proposals that allow ana-
lyzing the small signal stability of an electric power system sub-
jected to random perturbations self-sustained over time, [13,14]
and others. However, the fact is that the reported novel and impor-
tant methods are not directly applicable to international testing
systems, mainly because of the large number of dynamic variables
that represent the systems, and therefore the simulation of those
techniques presents numerical disadvantages. The work reported
in [15] shows important advances in this aspect, but the applica-
tion has been focused on the analysis of the stability of mechanical
structures.

Ref. [18] shows a method for tuning controlling parameters in
very large electric power systems, considering a stochastic
approach. The main objective of this work is to evaluate the sys-
tem’s response from the definition of performance indicators, con-
sidering that the perturbation that affects the system’s dynamics is
represented by means of an additive model self-sustained over
time. The purpose is to evaluate the impact of the gains of the con-
trollers of the machines on the cost of the energy losses under per-
manent regime, and in this way determine a better fit of the
parameters when required.

The work reported in [19] shows the results of analyzing the
small signal stability of electric systems subjected to multiplicative
stochastic perturbations through the calculation of Lyapunov
exponents. Three numerical methods are shown that allow deter-
mining a single Lyapunov exponent that allows generalizing the
analysis of classical deterministic eigenvalues.

Ref. [23] uses the Lyapunov exponent to define stability radii in
electric systems subjected to random perturbations self-sustained
over time, using the numerical methods reported in [19]. This work
shows a methodology that allows determining the maximum per-
turbation size that a system can resist without losing stability.
However, the analysis is made on a test system that considers a
generator connected to an infinite busbar.

Ref. [26] uses the methods reported in [19] to define perfor-
mance indicators in linear stochastic systems subjected to random
perturbations that are represented by a multiplicative model.

The present paper follows the guidelines of previous papers. A
method is shown that allows determining stability radii and
regions in multimachine electric systems subjected to random per-
turbations self-sustained over time. The perturbations are repre-
sented by means of a multiplicative model in which the stability
radii and regions are determined from the calculation of Lyapunov
exponents.

Model of the system

Basic concepts

A system of linear differential equations, with constant coeffi-
cient matrix, can be written in the form

D _x ¼ ADx in Rd: ð1Þ

To analyze the stability of the linear system (1) it is necessary to
determine the real parts of the eigenvalues of the matrix A. The sys-

tem will be asymptotically and exponentially stable if and only if all
the real parts of the eigenvalues are negative. However, this result is
not valid for systems that vary in time as follows (see [20])

D _x ¼ AðtÞDx in Rd: ð2Þ

In this context, it becomes necessary to consider a different
approach to stability studies, and the theory of Lyapunov exponents
allows this problem to be solved.

Let us consider a linear system in which the variation is stochas-
tic and is sustained in time

D _x ¼ AðntÞDx in Rd; ð3Þ

where nt represents the random and time-varying effect, by means
of a Markov-type stochastic process. If we denote the solution of (3),
for an initial condition x0 2 Rd, by uðt; x0; ntÞ, then the exponential
growth behavior of the linear system is given by the Lyapunov
exponents

kðx0;xÞ ¼ lim sup
t!1

1
t

log uðt; x0; ntðxÞÞk k: ð4Þ

In this case, x is an element of the probability space on which the
differential stochastic Eq. (3) is defined. Note that the trajectory
uðt; x0; ntðxÞÞ is (exponentially) stable if and only if its Lyapunov
exponent satisfies kðx0;xÞ < 0. In general, the stochastic linear sys-
tem (3), with ergodic perturbation, will have up to d Lyapunov
exponents.

Model of the stochastic perturbation

To model the perturbation nt , use is made of the results of Refs.
[16–18], where it was shown that the Ornstein–Uhlenbeck process
can be used to represent random phenomena present in electric
power systems. Considering that in general those perturbations
are restricted in size, the model used here consists of

nq
t ¼ q � sinðgtÞ; q P 0; ð5Þ

where

� gt is a stationary solution of the stochastic differential equation
known as Ornstein–Uhlenbeck equation

dgt ¼ �agtdt þ bdWt in R1: ð6Þ

Here Wt denotes the standard 1-dimensional Wiener process.
The parameters a and b must be estimated from real measure-
ments of the phenomenon that one wants to model. In this paper
we use a ¼ b ¼ 1, a particular case of the perturbation model
reported in Ref. [16].

� q is a parameter that models the amplitude of the effect of the
perturbation, i.e. for q ¼ 0 we have the unperturbed system (1).
� Wt denotes Brownian Motion.

Uniqueness of the Lyapunov exponent

Let us consider the stochastic linear system (3) with perturba-
tion given by Eqs. (5) and (6), under the conditions reported in
Ref. [21]. Then the system has a unique Lyapunov exponent for
each perturbation size q > 0, given by

kðqÞ ¼ lim sup
t!1

1
t

log uðt; x0; n
q
t ðxÞÞ

�� ��; ð7Þ

for every initial condition x0 2 Rd n f0g, with probability 1 (almost
surely). This means, in particular, that the system (3) is asymptoti-
cally (and exponentially) stable with probability 1 for the perturba-
tion of size q if and only if kðqÞ < 0.
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