
Sliding mode control of a shunt hybrid active power filter based on the
inverse system method

Wei Lu ⇑, Chunwen Li, Changbo Xu
Department of Automation, Tsinghua University, Beijing 100084, China

a r t i c l e i n f o

Article history:
Received 17 January 2013
Received in revised form 12 September 2013
Accepted 25 November 2013

Keywords:
Harmonics
Hybrid active power filter
Sliding mode control
Inverse system method
Zero dynamics

a b s t r a c t

In this paper, an inverse system method based sliding mode control strategy is proposed for the shunt
hybrid active power filter (SHAPF) to enhance the harmonic elimination performance. Based on the
inverse system method, the d-axis and q-axis current dynamics of the SHAPF system are firstly linearized
and decoupled into two pseudolinear subsystems. Then a sliding mode controller is designed to reject the
influence of load changes and system parameter mismatches on the system stability and performance. It
is proved that the current dynamics are exponentially stabilized at their reference states by the control-
ler. Moreover, the stability condition of the zero dynamics of the SHAPF system is presented, showing
that the zero dynamics can be bounded by adding an appropriate DC component to the reference of
the q-axis current dynamics. Furthermore, a proportional-integral (PI) controller is employed to facilitate
the calculation of the DC component. Simulation and experimental results demonstrate the effectiveness
and reliability of the SHAPF with the proposed control strategy.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The widespread application of power electrical devices (e.g.,
diode rectifiers) has increased the harmonic pollution in modern
power transmission/distribution systems. The harmonics gener-
ated by nonlinear loads can cause additional power losses, inter-
fere with nearby communication networks and disturb sensitive
loads [1,2]. Therefore, many international standards such as IEEE
519-1992 and IEC 61000-3-2 have been recommended to limit
the harmonic pollution.

Traditionally, low-cost passive power filters (PPFs) with high
efficiencies were widely used to eliminate the harmonics. How-
ever, the bulky PPFs only provide fixed harmonic compensation
and they detune with age [3]. These drawbacks can be overcome
by the power converter based active power filters (APFs), but they
are usually expensive and have high operating losses [4–8]. For the
sake of improving the compensation performance and reducing the
cost of the APFs, a number of topologies of hybrid active power fil-
ters (HAPFs) have been proposed [9–15]. Peng et al. proposed a
HAPF system combining a series APF and a shunt PPF [9]. In this
system, the APF endured high load currents works as a ‘‘harmonic
isolator’’ between the source and the nonlinear load. A novel

topology is proposed in [10], where the APF is connect in series
with a C-type PPF. However, an additional power supply is needed
to support the DC-link capacitor. Ref. [11] presented a combined
system of many PPFs connected in series with an APF via a match-
ing transformer. This topology might not be preferable since many
passive components are required. In particular, a novel shunt
hybrid active power filter (SHAPF), where three tuned PPFs are
connected in series with a small-rated APF without any matching
transformers, has attracted much attention [12–15]. Since the
source voltage is applied across the PPF, the required rating of
the APF can be substantially reduced. Furthermore, no additional
output filters are needed to suppress the switching ripples
produced by the power converter.

The control strategy is important to enhance the harmonic
elimination performance of the SHAPF. Many control strategies
have been proposed for the SHAPF. In [13], a linear feedback-feed-
forward controller is designed for the SHAPF. Because the dynamic
model of the SHAPF system contains multiplication terms of the
control inputs and the state variables, it is not easy to achieve both
satisfactory steady-state and transient-state performances with
the linear control strategy. To deal with the nonlinear characteris-
tic of the SHAPF, a sliding mode controller was presented in [14],
which has the property of robustness against load changes and sys-
tem parametric uncertainties. But the steady-state errors may still
be nonzero due to the absence of integrators in the closed loop sys-
tem. In [15], a Lyapunov function based control strategy is devel-
oped to globally stabilize the SHAPF system. Unfortunately,
owing to the difficulty in estimating the ripple component of the
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DC-link capacitor voltage, the obtained controller is an approxi-
mate one.

In this paper, an inverse system method based sliding mode
control strategy is proposed for the SHAPF. The inverse system
method is one of the linearization and decoupling (L&D) methods,
which does not need complicated coordinate transformation com-
pared with the differential geometric L&D based methods [16–21].
For the control of power converters [18,19] and moment gyros
[20,21], it has exhibited desirable steady and dynamic perfor-
mances. Here we decouple the nonlinearity of the SHAPF system
with the inverse system method, such that the d-axis and q-axis
current dynamics of the SHAPF system can be regulated indepen-
dently. In addition, the sliding mode control [22–27] is applied to
the decoupled pseudolinear system to reject the influence of exter-
nal disturbances and system parameter mismatches. Since the
SHAPF system has three internal dynamic variables, the internal
stability is analyzed based on the derived stability condition of
the zero dynamics. Moreover, to avoid the difficulty in calculating
the DC component from the stability condition, a PI controller over
the square of the DC-link capacitor voltage is adopted.

This paper is organized as follows. In Section 2, the nonlinear
mathematic model of the SHAPF system in the d–q reference
frames is described. A novel control strategy combining the sliding
mode control and the inverse system method is presented in Sec-
tion 3. The stability of the SHAPF including the internal and exter-
nal dynamics is analyzed in Section 4. Simulations for testing the
effectiveness and reliability of the proposed control strategy are
conducted in Section 5. Experimental results of a laboratory proto-
type are presented in Section 6. Finally, conclusions are given in
Section 7.

2. The SHAPF model

The topology of the SHAPF is shown in Fig. 1. A small-rated APF
using a voltage-source power inverter is directly connected in ser-
ies with three tuned PPFs. Since the source voltage is taken by the
PPF, the required ratings of the inverter and DC-link capacitor volt-
age are much smaller than those of a stand-alone shunt APF. The
three-phase diode bridge rectifier with RL loads is considered as
a nonlinear load. In this figure, vSj, vLj, vCj, iSj, iLj and iFj, j = a,b,c, rep-
resent the three-phase source voltage, the point of common cou-
pling (PCC) voltage, the PPF capacitor voltage, the source current,
the load current and the compensating current, respectively. Cdc

and vdc are the capacitance of the DC-link capacitor and the voltage
across the capacitor. LF, CF and RF represent the inductance, the
capacitance and the resistance of the PPF, respectively.

The dynamic model of the SHAPF under the synchronous rotat-
ing d–q reference frame can be expressed by the following differ-
ential equations [15]:

LF
_iFd ¼ �RFiFd þxLFiFq � vCd � udvdc þ vLd

LF
_iFq ¼ �RFiFq �xLFiFd � vCq � uqvdc þ vLq

CF _vCd ¼ iFd þxCFvCq

CF _vCq ¼ iFq �xCFvCd

Cdc _vdc ¼ udiFd þ uqiFq

8>>>>>><
>>>>>>:

; ð1Þ

where iFd and iFq denote the d–q axis compensating currents, vCd

and vCq are the d–q axis PPF capacitor voltages, vLd and vLq represent
the d–q axis PCC voltages, ud and uq are the d–q axis duty ratio func-
tions, and x is the source angle frequency of the source voltage.

To facilitate the controller design, the SHAPF system model can
be formally rewritten as follows:

_x ¼ f ðxÞ þ gðxÞu
y ¼ hðxÞ

�
; ð2Þ

where x = [iFd, iFq, vCd, vCq, vdc]T stands for the system state vector,
the vector u = [ud, uq]T is taken as the system control variables,
the vector y = [y1, y2]T = [iFd, iFq]T represents the system outputs.
The functions f(x), g(x) and h(x), respectively, are given as

f ðxÞ ¼

ð�RFiFd þxLFiFq � vCd þ vLdÞ=LF

ð�RFiFq �xLFiFd � vCq þ vLqÞ=LF

ðiFd þxCFvCqÞ=CF

ðiFq �xCFvCdÞ=CF

0

2
6666664

3
7777775
; gðxÞ ¼

�vdc=LF 0
0 �vdc=LF

0 0
0 0

iFd=Cdc iFq=Cdc

2
6666664

3
7777775

and hðxÞ ¼
iFd

iFq

� �
:

It should be noted that the obtained multi-input multi-output
(MIMO) system model (2) is affine nonlinear due to the multiplica-
tion terms of the state variables and the control variables. In addi-
tion, the state variables are strongly coupled to each other. These
two problems can be properly handled by the inverse system meth-
od, which aims at directly finding the relationship between the con-
trol variables and the system outputs.

3. Controller design

In this section, the synthesis of the sliding mode controller
based on the inverse system method for the SHAPF is presented.

3.1. L&D of the SHAPF

For the L&D of the SHAPF system with the inverse system meth-
od, we firstly prove the invertibility of the system according to the
Interactor algorithm [16].

Based on the system model (2), we differentiate the output vec-
tor y with respect to the time until the control variables ud and uq

appear explicitly, which leads to the following equation:

JðuÞ ¼
_y1

_y2

� �
¼
ð�RFiFd þxLFiFq � vCd þ vLd � vdcudÞ=LF

ð�RFiFq �xLFiFd � vCq þ vLq � vdcuqÞ=LF

� �
: ð3Þ

The Jacobi matrix of J(u) with respect to the control vector u can be
calculated as follows:

@JðuÞ
@uT ¼

�vdc=LF 0
0 �vdc=LF

� �
: ð4Þ

Because the DC-link capacitor voltage vdc is positive in the opera-
tion range, oJ(u)/ouT is nonsingular. Moreover, the relative degree
vector of the system is a = [a1, a2]T = [1, 1]T, and a1 + a2 = 2 is
strictly less than the system order n = 5. Therefore, there are twoFig. 1. Topology of the SHAPF.
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