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a b s t r a c t

Convex relaxations of the optimal power flow (OPF) problem have received a lot of attention in the recent
past. In this work, we focus on a second-order cone (SOC) relaxation applied to an OPF based on a branch
flow model of a radial and balanced distribution system. We start by examining various sets of conditions
ensuring the exactitude of such a relaxation, which is the main focus of the existing literature. In partic-
ular, we observe that these sets always include a requirement on the objective to be a minimization of a
function increasing with the branch flow apparent powers. We consider this hypothesis to be at odds
with what is to be expected of an active distribution system and demonstrate in specific case studies
its counterproductive impact. We continue by introducing an objective function allowing distributed
generations and storages (DGS) to take advantage of the benefits they bring to the power system as a
whole. As this entails the possibility for the relaxation not to be exact, we describe and prove the theo-
retical convergence to optimality of an algorithm consisting in adding an increasingly tight linear cut to
the SOC relaxation. In order to allow the attainment of a solution satisfying the network constraints in a
finite number of steps, we continue by introducing a tailored termination criterion. Afterwards, we inves-
tigate the ability of our algorithm to obtain a satisfactory solution on several case studies, spanning var-
ious network sizes, number of nodes equipped with DGs and their level of penetration. We then conclude
on the benefits brought about by this approach and reflect on its limits and the opportunities for further
improvements.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

With the aim to increase the sustainability of the electric power
system, the share of renewable energies in the production mix is
scheduled to increase in the future. For example, the European
Union has set goals for its member states in order to attain a 20%
share of renewable energy in its final energy consumption by
2020, and some countries have taken even more ambitious stances.
This target will be partially met by integrating significant amounts
of dispersed renewable energy generators (mainly photovoltaic
(PV) and wind power) to the distribution grid. These developments
will have a considerable impact on the design and operation of the
electric system, both at the national and local level and so new
tools will be needed to assist in the planning and operation of at
least the distribution network. Indeed, as the current passive distri-
bution network turns into an Active Distribution Network (ADN)

(see [1] for a definition) with the introduction of partially and
totally controllable generation and storage means, planning stud-
ies based solely on power flows for extreme load conditions will
not be adapted anymore, as they would prevent the distribution
system operators from taking advantage of the full benefits distrib-
uted generation could bring.

Considering the similarities between the current transmission
network and the future ADN, it is a safe bet to assume that the
optimal power flow, a framework first introduced in 1962 by [2]
and now widely used for the planning and operation of the trans-
mission network, will prove useful for this purpose. However, it
has been remarked by several authors such as [3,4] that some char-
acteristics inherent to the distribution system (in particular high R/
X ratios and the radial nature of its topology) prevent us from
applying traditional transmission system OPF algorithms, such as
the Newton–Raphson method implemented in, for example, the
Matpower package [5]. Moreover, simplifications commonly used
in the planning of the transmission system, such as the lineariza-
tion of the power flow constraints, are known to produce poor
results with high R/X networks.
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In this context, the general objective pursued in this paper is to
provide a methodology solving the single-stage OPF problem in a
medium-voltage balanced radial distribution system to simulate
DGS, with the purpose to integrate it in planning studies. This last
conditions entails the need for a methodology that privileges speed
of convergence and accuracy over precision, as it is expected to be
run a large number of times to compare various planning options
over long periods and with hour-long time steps, with significant
uncertainties in input data. Additionally, its implementation
should be versatile in terms of objective function and constraints
to accommodate the uncertainties surrounding the future regula-
tory environment of the distribution system.

Of course, OPF in the distribution system have been envisioned
for purpose other than the one described here, such as real time
control [6] or optimal DG placement [7]. Nonetheless they all share
an underlying common structure of Quadratically Constrained
Quadratic Problem (QCQP) that we will describe below.

OPF as a QCQP

Traditionally, OPF based on bus injection model have been asso-
ciated with meshed transmission systems and branch flow models
have been used for radial distribution systems, see [8,9] for an up-
to-date view on the subject. It has been recently proven that both
can be cast as QCQP that are non-convex due to the presence of
quadratic equality constraints, in the form of a rank constraint in
the bus injection model [10] and power flow constraints in the
branch flow model [11]. It is thus a NP-hard problem and cannot
be solved in polynomial time while guaranteeing global optimality
in general. A wide range of techniques have been employed includ-
ing conjugate gradient, successive quadratic programming,
branch-and-bound, Lagrange relaxation, interior point methods,
simulated annealing, genetic algorithm and particle swarm optimi-
zation that represent various compromises between optimality
and convergence speed and between versatility and tailoring for
a specific problem (see [12] for a review of deterministic algo-
rithms and [13] for non-deterministic ones). Considering our
emphasis on convergence speed and versatility, and the parallel
development of high performance SOC solvers and studies of qua-
dratic convex relaxations of the OPF problem, we have chosen to
focus our interest on them.

Convex relaxations

In the same manner that the equivalent QCQP of an OPF
depends on which model is used, the corresponding convex relax-
ations will also depend on the model chosen.

1. Convex relaxation based on bus injection model are obtained by
relaxing the rank constraint, as explained in [10]. We then
obtain a semi-definite problem with a size proportional to the
square of the size of the initial problem

2. Convex relaxation based on branch flow model. These relax-
ations are done in two steps. The first is a relaxation of bus
angle constraints that is always exact for radial network [11]
and the second relaxes quadratic equalities to convex inequali-
ties to yield a SOC problem of a size equivalent to that of the ori-
ginal problem.

In the case of a radial network, [8] has shown that these relax-
ations are equivalent. Consequently, we choose the SOC option as
the size of the resulting problem is smaller. This is supported by
the findings in [8], where the authors have compared computational
time to solve both relaxations on radial networks. While these were
equivalent for small networks (9–39 nodes), the SOC relaxation was
two orders of magnitude faster for the 300 bus test case.

Outline

For the remainder of this paper, we will focus on the SOC
relaxation applied to a branch flow model of a balanced radial dis-
tribution system. We will start by stating a mathematical repre-
sentation of the problem and present some of the conditions
under which this relaxation may be exact, the focal point of most
of the existing literature. We will then illustrate in which situa-
tions these conditions cannot be met on a simplified case study
and introduce the cutting plane concept we will use in these
instances, before proving its theoretical convergence to global opti-
mality. We continue by introducing a termination criterion so that
the algorithm is able to reach a satisfactory solution in a few
iterations of a SOC solver, before analyzing its behavior on several
case studies. We will conclude by reflecting on the applicability of
the presented algorithm for our purpose and on the ways its
performance and representativity of the problem can be
enhanced.

The OPF model and its SOC relaxation

In the following, we will adopt the notations below:

Nomenclature
j 2 ½1; J� the index of a node, where J is the node count and 1

is the root node
f ðjÞ the father node of node j, exists and is unique for all

nodes except the root node
cðjÞ the set of children nodes of node j
Pi;j the active power flowing from node i to node j
Qi;j the reactive power flowing from node i to node j
Ii;j the square of the current flowing from node i to node

j
ri;j the resistance between node i and node j
xi;j the reactance between node i and node j
zi;j the impedance magnitude between node i and node j
Imax
i;j the square of the maximal current that may flow

from node i to node j
Vj the voltage magnitude at node j
VOLTC the set of permissible voltages at the root node,

dictated by the on-load tap changer characteristics
Pst

j
the active power injected by the storage inverter at
node j

Pst;sp
j

the set point for the active power injected by the
storage inverter at node j

Qst
j

the reactive power injected by the storage inverter at
node j

Smax;st
j

the maximal apparent power of the storage inverter
at node j

Ppv
j

the active power injected by the PV inverter at node j

Ppv;sp
j

the set point for the active power injected by the PV
inverter at node j

Qpv
j

the reactive power injected by the PV inverter at
node j

Smax;pv
j

the maximal apparent power of the PV inverter at
node j

Pload
j

the active power load at node j

Qload
j

the reactive power load j

x the vector of control and state variables, that thus
includes active and reactive flows in the lines,
voltage magnitudes at each nodes and active and
reactive injections of storage and PV inverters

DðxÞ the convex quadratic objective function representing
the interests of the DGS operators
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