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a b s t r a c t

Yaw control systems orientate the rotor of a wind turbine into the wind direction, optimize the wind
power generated by wind turbines and alleviate the mechanical stresses on a wind turbine. Regarding
the advantages of yaw control systems, a k-nearest neighbor classifier (k-NN) has been developed in
order to forecast the yaw position parameter at 10-min intervals in this study. Air temperature, atmo-
sphere pressure, wind direction, wind speed, rotor speed and wind power parameters are used in 2, 3,
4, 5 and 6-dimensional input spaces. The forecasting model using Manhattan distance metric for k = 3
uncovered the most accurate performance for atmosphere pressure, wind direction, wind speed and rotor
speed inputs. However, the forecasting model using Euclidean distance metric for k = 1 brought out the
most inconsistent results for atmosphere pressure and wind speed inputs. As a result of multi-tupled
analyses, many feasible inferences were achieved for yaw position control systems. In addition, the
yaw position forecasting model developed was compared with the persistence model and it surpassed
the persistence model significantly in terms of the improvement percent.

� 2015 Elsevier Ltd. All rights reserved.

Introduction

A wind turbine includes many interconnected mechanical com-
ponents such as blades, rotor, gearbox, bearings, yaw system, pitch
system and tower [1,2]. Yaw and pitch control systems reduce the
fatigue loads caused by the aerodynamic forces and increase the
production of electrical energy from wind energy [3]. Particularly,
yaw control systems track the wind direction and face the wind
stream perpendicularly [4]. In addition, yaw control systems also
drive the rotor mechanism out of the wind in order to decrease
its rotational speed [5]. As a result, yaw position parameter has a
critical role in wind energy systems. However, it is difficult to
adjust yawing moment in time due to the inertia problem of wind
turbine in automatic-oriented yaw control systems [6]. For this
reason, yaw position forecasting contributes the efficient and the
safe operation of wind turbines.

Farret et al. determined the maximum wind power correspond-
ing to the optimum wind direction and a sensorless yaw
control system was realized [7]. Chen et al. designed a fuzzy
proportional-integral-derivative system for yaw position control
and the wind direction was tracked in a high precision way [8].
Fadaeinedjad et al. simulated the aerodynamic, mechanical and
electrical aspects of a fixed-speed wind turbine and yaw errors
lead to the voltage and power oscillations [9]. Kusiak et al. opti-
mized the blade yaw angle using an evolutionary computation
algorithm and the power output of a wind turbine was upgraded
[10]. Lee et al. implemented a maximum power point tracking
algorithm and ensured the accurate yawing torque [11]. Rijanto
et al. processed wind direction signals in an electronic yaw control-
ler and dissipated the cyclic instabilities of a horizontal-axis wind
turbine [12]. Chenghui et al. proposed an intelligent yaw controller
based on artificial neuro-endocrine-immunity system and
improved the stability and robustness of the yaw control system
[13]. Owing to the lack of academic studies in the field of yaw posi-
tion forecasting, the main objective of this paper is to forecast the
yaw position parameter of a wind turbine using air temperature,
atmosphere pressure, wind direction, wind speed, rotor speed
and wind power parameters in multi-tupled inputs. The developed
yaw position forecasting model considers the number of nearest
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neighbors, the dimension of input parameters, the selected dis-
tance metric and minimized the yaw position error remarkably
by reducing it to 1.100� of MAE, 0.405% of MAPE and 1.209% of
NRMSE in this paper. However, maximum yaw error and standard
deviation of 10� in the literature were distributed [14–16]. On the
other hand, the k-NN classifier outperforms with 75.5% improve-
ment in comparison for the persistence model. MAE, MAPE and
NRMSE values of the persistence model were obtained as 3.966�,
1.652% and 6.634%, respectively.

This paper is organized as follows. Section ‘Lazy learning model’
focuses on the k-NN classifier as a lazy learning approach and
introduces the activity diagram of the yaw position forecasting
model developed. Section ‘Yaw position forecasting’ explains the
dataset properties, and distance and error metrics used in this
study. The yaw position forecasting results based on multi-tupled
inputs were compared. Finally, in section ‘Conclusions’, the work
was concluded and the future studies were given.

Lazy learning model

Lazy learners store the training instances and do not construct
any classification model until receiving a test instance [17]. How-
ever, lazy learners enable to model complex decision spaces having
hyperpolygonal shapes compared to other learning algorithms
[18]. Therefore, lazy learners have a wide range of application in
pattern recognition. The k-NN classifier is also based on lazy learn-
ing and it initially considers each instance in training and test data-
sets as a point in an n-dimensional input space. Afterwards, it
makes a classification for a test instance by comparing it to the
most similar ones in the training dataset [19,20]. In here, each
instance represents an n-dimensional attribute tuple. The detailed
flow chart of the yaw position forecasting model developed in this
study is given in Fig. 1.

After browsing the training and test datasets, selecting the dis-
tance and error metrics, assigning the value of k, the file reading
method is called and the data points in training and test datasets
are assigned to the separate arrays. The selected distance calcula-
tion method determines the close distance values among each data
point in test and training datasets. So, the distance table array is
created in a matrix form of m � n. m and n identify the number
of data points in test and training datasets, respectively. The near-
est neighbor method searches the k smallest distance in each row
of the distance table arrays and their row numbers in training data-
set are assigned to an array having a matrix form of m � k. In here,
k identifies the number of nearest neighbors. In case of using the
neighbors averaging method, the observed classes of the related
row numbers in training dataset are averaged for each test data
to achieve the forecasted classes. As a result, the observed values,
the observed classes and the forecasted classes are first written
to an Excel file and the observed classes and the forecasted classes
are then visualized in a graphical form. Besides, the error table
array is created by means of the selected error calculation method
and the error results of the forecasting process are also represented
in a graphical form as aforementioned. Finally, MAE, MAPE and
NRMSE values are presented in graphical forms to the user.

Nomenclature

Ta air temperature (�C)
Pa atmosphere pressure (hPa)
Wd wind direction (�)
Ws wind speed (m/s)
R rotor speed (rpm)

Pw wind power (kW)
k-NN k-nearest neighbor classifier
MAE mean absolute error (�)
MAPE mean absolute percentage error (%)
NRMSE normalized root mean square error (%)

Call the file reading method

Assign the observed values and classes in  training dataset to 
seperate arrays

Assign the observed values and classes in  test dataset to 
seperate arrays

Call the distance calculation method

Call the Euclidean 
distance method

[Euclidean] [Minkowski]

[Manhattan]

Call the Manhattan 
distance method

Call the Minkowski 
distance method

Calculate the distances from each observation in test 
dataset to each observation in training dataset

Determine the k smallest distances in each row of the distance 
table array

Assign the row numbers of the k smallest distances to an array 
for each test data 

Average the observed classes of the related row numbers for 
each test data

Assign the averaged classes to an array as the predicted 
classes 

Write the observed values, the observed classes and the 
predicted classes to an Excel file

Visualize the observed classes and the predicted classes on a 
graphical representation

Call the error calculation method

Call the absolute error 
method

Call the absolute 
percentage error method

Create the error table array

Visualize the error results on a graphical representation

Calculate the mean absolute error, the mean absolute 
percentage error and the normalized root mean square error

Browse the training and test datasets, select the distance and 
error metrics, assign the value of k

[Mape][Mae]

Call the neighbors averaging method

Call the nearest neighbors method

Create the distance table array

Fig. 1. A detailed flow chart of the model for the yaw position forecasting.
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