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a b s t r a c t

Power system state estimation (SE) is a crucial basic function in energy management systems (EMSs)
which offers the basic load flow models. It is a critical problem to check whether the SE results are cred-
ible enough to be used for online decision making or close-loop control. However, there are few published
works focus on this topic till now. The accuracy of SE results can be affected by various factors, many of
them are very difficult to quantify. Hence a feasible method is to estimate the accuracy of SE results based
on residuals. Due to the huge number of measurements in real power systems, it is necessary to establish
a reasonable scalar index that represents the residuals of all measurements and directly indicates the
accuracy of the SE results. This paper provides a systematic research on the SE accuracy evaluation prob-
lem and proposes a new SE accuracy evaluation index based on correntropy. Some conventional SE accu-
racy evaluation indices are also introduced and compared theoretically and also through extensive
numerical tests.

� 2014 Elsevier Ltd. All rights reserved.

1. introduction

There are mainly three essential problems evolved in power
system state estimation: measurement accuracy quantification,
SE algorithms and result accuracy evaluation. Extensive researches
focus on SE algorithms have been published, especially on the
suppression of gross errors in topology [1,2], analog measurements
[3–6] and network parameters [7–9]. Some effective studies on the
measurement accuracy quantification have also been reported
[10,11]. However, there are few systematic researches focus on
the SE results accuracy evaluation problem. Since the perfor-
mances of most functions in EMS depend on the SE results, it is a
critical problem to check whether the SE results are credible en-
ough to be used for online decision making or close-loop control.

The accuracy of the SE results can be affected by various factors
including errors in PT/CT, AC sampling errors, errors from informa-
tion channels, device malfunctioning and parameter errors, SE
algorithm, etc. Many of them are very difficult to quantify. Hence
it is very difficult to give a deductive combination for all these fac-
tors to evaluate the accuracy of SE results, and a residual-based
accuracy estimation method should be employed instead. Gener-
ally speaking, the smaller the measurement residuals are, the more
accurate the SE result is. Since there are huge number of measure-

ments in a real power system, the various measurement residuals
must be represented by a scalar index to quantify the SE accuracy
intuitively.

There are several conventional SE accuracy evaluation indices.
The most common method is using the first or second order norms
of residual vector to build evaluation indices. Such indices sum up
the absolute values or square values of the residual vector [12,13].
These indices lack clear physical meanings, and maybe infected by
gross errors. In metrology, measurement uncertainty is a textbook
method to evaluate the accuracy of SE [14,15]. The calculation of
measurement uncertainty is a deductive method, which is very dif-
ficult for implementation in large-scale practical power systems.
Refs. [16,17] suggest using a threshold value of 3% or 5% of the
measurement value as a confidence bound for each measurement.
In China, the State Grid Corporation of China (SGCC) proposes an
official standard for evaluating the accuracy of the SE, which
named as acceptance rate (AR). AR counts the rate for the measure-
ment whose residual is less than a artificial set threshold value. In
theoretically, AR is loosely connected with measurement uncer-
tainty, but its crucial threshold values are totally determined by
manual experience.

This paper provides a systemic research on the problem of SE
result accuracy evaluation, but the measurement accuracy quanti-
fication and SE algorithms are beyond this paper. An important
contribution of this paper is that it proposes a new SE accuracy
evaluation method, the scalar index of correntropy (COE), and
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makes a comprehensive comparison of the proposed COE with sev-
eral common scalar indices, including the mean absolute value of
weighted residuals (MAR), mean squares of the weighted residuals
(MSR), and acceptance rate (AR).

The remainder of this paper is organized as follows. Section 2
provides an introduction to the traditional indices. The correntropy
index is introduced in Section 3. Section 4 introduces the compar-
ison method used in this paper. Extensive numerical tests used to
verify the performances of the various indices, and their results are
described in Section 5.

2. Common scalar indices

2.1. Mean absolute value of weighted residuals (MAR)

The mean absolute value of weighted residuals (MAR) can be ex-
pressed as:

MAR ¼ 1
m

Xm

i¼i

jri=dij ð1Þ

where m denotes the number of measurements, ri and di are the
measurement residual and standard deviation for the ith measure-
ment. A smaller MAR index indicates more accurate SE results.

2.2. Mean squares of weighted residuals (MSR)

The mean squares of weighted residuals (MSR) can be defined
as:

MSR ¼ 1
m

Xm

i¼i

ðri=diÞ2 ð2Þ

A smaller MSR index indicates more accurate SE results.

2.3. Measurement uncertainty and acceptance rate (AR)

Measurement uncertainty is a textbook method to measure the
accuracy of the SE results in metrology. The International Stan-
dards Organization (ISO) has defined two types of measurement
uncertainties: standard and extended. Standard measurement
uncertainty UISO is defined as [15]:

UISO ¼ �K½U2
A þ U2

B�
1=2 ð3Þ

where UA is type A uncertainty, which is measured by statistical
methods, and UB is type B uncertainty, which measured more sub-
jectively using non-statistical methods. K is a multiplier used to ob-
tain the confidence of interest. The calculation of measurement
uncertainty is deductive which depends on the measurement stan-
dard deviations and artificial justice. In real power systems, how-
ever, the measurement standard deviations comprise various
factors and it is very difficult to estimate their standard deviations.
Although some control centers have their manually specified values
for measurement standard deviation, di, they are usually inaccurate.
The quantification of type B uncertainty for large-scale real power
systems is even more difficult. Hence, the application of standard
measurement uncertainty becomes impractical.

Instead of standard measurement uncertainty, extended mea-
surement uncertainty can be used to evaluate the accuracy of the
SE results. Extended measurement uncertainty is defined as:

Pðjrij < kUISOÞ ¼ c ð4Þ

where k is the coverage factor and c is the confidence level, which
can be 99%. Assume that the measurement errors are Gaussian dis-
tributed, the probability of the measurement errors falling in the
interval [�UISO, +UISO] is 68.3%, and the probability of the measure-

ment errors falling in the interval [�3UISO, +3UISO] is 99.7%. The cor-
responding coverage factor k is about 3.0 for c = 99%. For a
reasonable SE result, most measurement residuals must fall into
the interval defined by the extended measurement uncertainty with
an appropriate confidence level or coverage factor. Therefore, the
acceptance rate (AR) index can be used to evaluate the accuracy
of the SE results:

AR ¼ 1
m

Xm

i¼1

ai � 100% ð5Þ

where

ai ¼
1 if jrij < ei

0 else

�
ð6Þ

ei ¼ kUISOi stands for the extended measurement uncertainty and
defines the confidence interval. The AR index in (6) has been
adopted by the SGCC as an official standard for evaluating the SE
accuracy. However, since the standard measurement uncertainty
UISO is difficult to estimate in practical power systems, the value
of the extended measurement uncertainty ei is also difficult to
quantify, and is always specified according to manual experience.
Although the acceptance rate is derived from measurement uncer-
tainty theory, it is very subjective since the threshold value ei is
set manually.

3. Correntropy based scalar index

3.1. Brief introduction

Correntropy is a generalized similarity measure between two
random variables in signal processing [18–20]. Assume that x1

and x2 are two random variables with probability density functions
f1 and f2, respectively. Their Renyi’s quadric correntropy can be de-
fined as:

Hðx1; x2Þ ¼ � log I

I ¼
R

f1ðxÞf2ðxÞdx
ð7Þ

where I is the cross information potential and H(x1, x2) is Renyi’s
quadric correntropy of x1 and x2. The probability density function
can be estimated from the kernel function based on the samples,
and the cross information potential can be estimated as:

Î ¼ 1
m

Xm

i¼1

jðx1i; x2iÞ ð8Þ

where m is the number of samples, x1i and x2i are the ith sample val-
ues for x1 and x2, respectively, and j is the kernel function, which
should be symmetric non-negative definite. According to the
Moore–Aronszajn theorem [21,22], for any symmetric non-negative
definite function j, there exists a corresponding reproducing kernel
Hilbert space F defined by mapping u: X ? F with j as a kernel
function. This yields:

huðx1Þ;uðx2Þi ¼ jðx1; x2Þ ð9Þ

where h�i stands for the inner product, which measures the informa-
tion potential in Hilbert space. Hence, one can conclude that corren-
tropy in fact maps the random variables from their original space to
another Hilbert space in which their cross information potential is
calculated. An interesting characteristic is that all of the reproducing
kernel Hilbert spaces with definite dimensions are omorphism, so
we can choose any symmetric non-negative definite kernel function
to construct the reproducing kernel Hilbert space F. The entire anal-
ysis can be carried out in space F without knowing its exact meaning.

The most commonly used kernel function is the Gaussian
kernel:
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