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Large-scale smart grids call for online algorithms that are able to achieve the most accurate estimates.
This paper shows how to achieve both the scalability and near globally optimal results for bad data
and topology error detection and identification problems, by conducting fully distributed algorithms over
convexified problem formulations. The proposed distributed decomposition is realized by (1) reducing a
large network into much smaller network “cliques” which do not need extensive information exchange;
(2) performing a Lagrangian dual decomposition in each clique and passing messages between cliques;
and (3) conducting alternative coordinate descent optimization for robustness. To reduce the relaxation
error in the convexification procedure, a nuclear norm penalty is added to approximate original prob-
lems. Finally, we propose a new metric to evaluate detection and identification results, which enables
a system operator to characterize confidence for further system operations. We show that the proposed
algorithms can be realized on IEEE test systems with improved accuracy in a short time.

© 2016 Elsevier Ltd. All rights reserved.

Introduction

As one of the most significant infrastructures in human society,
the electric power grid not only provides electricity as a form of
flexible, convenient energy for industrial and individual uses, but
also provides it in a clean and relatively easy way to transmit.
Despite 130-plus years of development and engineering, electric
power systems are still under intense pressure to achieve stability
against outages and blackouts as the power grid moves into large
scale network with tons of new devices and loads. While having
a potential to reduce the impact on the environment, increase fuel
diversity, and bring about economic benefits, new grid components
also raise tremendous concerns regarding the secure and reliable
operation of the backbone EHV/HV power grids.

Speaking more generally, the power system operators of
traditional power grids face significant challenges in managing
the effects of small scale generations and loads, which include
but not limited to renewable energy generators, such as wind/solar
generators; responsive small electricity users; and electricity
users which can offer storage to utility, such as electric cars.
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Their topology and data quality need to be estimated to account
for their effects on the state of the backbone power grid. Therefore,
highly accurate algorithms capable of dealing with increasing
number of bad data and constantly varying network topology are
needed.

However, as most bad data and topology identification
algorithms currently used by the electric power industry is compu-
tationally complex, they are typically used for Extra High Voltage
(EHV), High Voltage (HV) and, at times, for Medium Voltage (MV)
representation of the complex multi-voltage level power grids.
This, in turn, makes it very hard to detect and identify bad data
and topology error within many new diverse resources and users
connected to the Low Voltage (LV) level distribution systems. A
multi-layered, distributed implementation of bad data and topol-
ogy error detection and identification for future electric energy
systems is likely to become the preferred approach. This requires
a systematic design of distributed algorithms whose performance
does not worsen relative to the centralized methods.

In this paper, we first extend the convexification idea in state esti-
mation [1] to bad data and topology error detection (L, norm) and
identification (L, norm) with substation modeling. The goal is to
improve accuracy with a near global optimum estimate by embed-
ding states into proper high dimensional space. This is because there
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is a strong relationship between SDP formulation for state estima-
tion and the SDP formulation for optimal power flow, e.g., [2,3] show
that the rank-one condition is satisfied with most power grid topolo-
gies. However, as a centralized implementation of the semidefinite
programming (SDP)-based approach is computationally prohibitive
[1], we propose to implement a distributed algorithm based on
the underlying power system graph for scalability. The objective
decomposition is achieved by using the Lagrangian dual
decomposition method [4]. To decompose the system-level
positive-semidefinite constraint over the state matrix, the notion
of induced chordal graphs is used. Although this is similar to the dis-
tributed implementation of the SDP-based AC optimal power flow
method [5-7], we do not set limits on states, input or output vari-
ables due to qualitatively different performance objectives between
our problems and AC optimal power flow problem. Then, the proof of
equivalence between the centralized algorithm and the distributed
algorithm is detailed next. Different than past works, this paper
proposes how to reduce approximation error in convex-relaxation
by penalizing the objective with a nuclear norm instead of a pure
rank-one constraint relaxation.

Therefore, by using message exchange on coupling nodes
between neighboring local networks, the original centralized SDP
detection and identification problems can be characterized in a
distributed manner by performing local SDP computation.
Obviously, a direct consequence is computational time reduction
if parallel processors are used. A fully distributed implementation
can also be achieved by using coordinate descent optimization
for robustness [8].

In comparison with existing methods, the novelty of the pro-
posed approach lies in (1) past WLS-based bad data and topology
error detection and identification have local optimum issues. In
this paper, we not only show how to convexify such problems
but also show how to conduct them in a distributed way. (2) We
show that the distributed computation can be generalized. This
means that, in addition to L, norm, L; norm can also be used for
error identification. (3) We derive lower bounds to characterize
the performance of the arbitrary detection and identification meth-
ods. (4) [9] shows results about distributed state estimation based
on boundary division, but our results are about distributed bad
data and topology detection and identification based on the net-
work structure decomposition, e.g., chordal graphs decomposition.
[9] relaxes the rank-one constraint, but we add a nuclear norm
penalty to approximate such a constraint.

If implemented, such algorithms are likely to form the basis for
“smart” grids by enabling even many small system users to
participate in enhancing system operation in predictable ways.
For example, the topology (i.e. circuit breaker status) and data
quality (i.e. power injection measurements) of smart meters would
not have to be estimated by the operator of the backbone system.
Instead, topology error and bad data of small users get estimated in
a distributed manner by message-passing with neighboring system
users which have smart meters. The aggregated information is
then communicated in a bottom-up way to the backbone system
operator. Highly accurate distributed detection and identification
as well as greatly reduced computational time are illustrated
through simulations.

This paper is organized as follows: In Section “Review”, we
review detection and identification methods for bad data and
topology error; then a convex-relaxation-based approach is pro-
posed to resolve the local optimum issues; in Section “Distributed
implementation for bad data and topology error detection and
identification”, we propose a distributed SDP-based algorithm;
in Section “Simulation results”, we describe the simulation
results for IEEE test systems; finally, we conclude this paper in
Section “Conclusions”; an Appendix on using power flow
measurements in the distributed algorithm is also included.

Review
Bad data and topology error detection

As both bad data and topology error can have a dramatic
influence on measurements, they usually cause large residuals in
weighted least square minimization (1). Therefore, the resulting
objective value is used in a chi-squared test to detect them.

minj,(v) = PP
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where vector v = (|v4]€®,|vs]é, ... |vsleé®)  represents the
system states to be estimated for error detection. h;(-) relates the
unknown state variable » to the ith noiseless measurement. z; is
the ith telemetered measurement, such as power flow and voltage
magnitude. o; is the standard deviation of Gaussian noise u; in z,
where noises in different measurements are assumed to be
independent. Finally, m represents measurement number.

Next, one looks into a chi-squared distribution table to find a
threshold, i.e., Jn_n 059, corresponding to a confidence probability
95% and m — n degrees of freedom. If J,(¥) > J;n_y) 5%, @ bad data
or topology error is declared [10,11]. The bus associated with the
largest measurement residual is called a suspicious bus. Deciding
whether a test failure indicates a sensor error or a topology error
is out of the scope for this paper. Interested readers are referred
to the Section 8.6.1 of [12,10,11].

Bad data and topology error identification

For bad data identification, one approach is to assume that the
measurement associated with the largest residual in (1) to be bad
data. So one iterates a chi-squared test with a measurement
removal until the test is passed. Another approach is to use
Weighted Least Absolute Value (WLAV), or L; norm minimization
in (2) to find bad data (sparse noises) [13] altogether.
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For topology identification, one may adjust topology connection
associated with large residuals found in (1), but extending suspi-
cious bus into a sub-station model may be a better idea. This
approach starts by changing measurement model z; = h;(v) + u;
into (3) to explicitly account substation circuit breaker status
(Chapter 8 of [12]).

zi = hi(v) + Mif + u;, (3)

where the state » is extended by adding the line power flow vector
f through circuit breakers in the suspicious substation. In Eq. (3),
the term M;f represents the effect of these flows in each measure-
ment z; M; is an incident matrix defining the interconnection of
suspected circuit breakers [12].

To decide the digital status of a circuit breaker, one needs to
estimate f. One can choose p = 2 (for detection) or p = 1 (for iden-
tification) in (4) for this purpose, where the parameter p (p > 0) is
chosen to achieve the desired performance. The goal is to obtain a

joint extended state (#, f ) that best fits the measurement set z
according to the measurement model in (3).

Mf (4)

mmjp (v.f) = zm:
i=1

Subsequently, f is used to estimate digital status of bus breakers for
topology identification.
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