Available online at www.sciencedirect.com

ScienceDirect

International Journal of

Human-Computer

EGN. Studies
ELSEVIER Int. J. Human-Computer Studies 66 (2008) 484—494 _——
www.elsevier.com/locate/ijhcs
An 1nstitutional analysis of software teams
Josh Tenenberg™
School of Informatics, Indiana University, 901 East 10th Street, Bloomington, IN 47408, USA
Available online 29 August 2007

Abstract

Modern software is constructed by teams of software developers. The central question that this paper addresses is what policies should
be enacted for structuring software teams to enhance cooperative as opposed to self-serving behavior? The contribution of this paper is in
viewing software teams as being subject to a set of well-understood collective action problems: there are individual incentives to receive
the joint rewards for a team-developed software project without contributing a fair share to its development. In this paper, an
institutional analysis perspective is used in presenting a set of theoretical principles and an analytical framework recently developed in
game theory, political economy, experimental economics, and natural resource governance for the understanding and resolution of these
collective action problems. The principles and analysis framework are applied to an empirical case study of software teamwork within an
academic setting. This case study shows, first, how to apply the analytic framework on an actual collective action situation. Second, it
demonstrates how the theoretical understandings can be used as a basis to account for outcomes within this setting. And third, it
provides an example of a particular institutional arrangement that elicits high levels of cooperation and low levels of free riding within a
real-world setting. Understanding the importance of institutions for shaping individual and social behavior within software development
teams makes these institutions more amenable to intentional human design.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Free riding; Cooperation; Software management; Teamwork; Social dilemma; Collective action problem

1. The social nature of software development

Modern software is constructed by teams of software
developers and used within social settings. Cain et al.
(1996) capture the inherently social nature of software
development:

Software development is a predominantly social activity.
It is important to view software development groups,
departments, and corporations as social bodies. ... The
essentially human nature of customer interactions,
programmer creativity, and programming team dy-
namics demand that we deal with the social side of
software production enterprises (Cain et al., 1996).

*Corresponding author at: Department of Computing and Software
Systems, Institute of Technology, University of Washington, Tacoma,
1900 Commerce Street, Tacoma, WA 98402, USA. Tel.: +12536925860;
fax: +12536925862.

E-mail address: jtenenbg@u.washington.edu
URL: http://faculty.washington.edu/jtenenbg/

1071-5819/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijhcs.2007.08.002

The central question that this paper addresses is what
policies should be enacted for structuring software teams to
enhance cooperative as opposed to self-serving behavior?
The contribution of this paper is in viewing software teams
as being subject to a set of well-understood collective action
problems: “[a]ll efforts to organize collective action,
whether by an external ruler, an entrepreneur, or a set of
principals who wish to gain collective benefits, must
address a common set of problems. These have to do with
coping with free riding, solving commitment problems,
arranging for the supply of new institutions, and monitor-
ing individual compliance with sets of rules” (Ostrom,
1990, p. 27). Software teams are as subject to these
collective action problems as other settings in which the
institutional approach has been used, such as governance
of the nation-state (Helmke and Levitsky, 2006) or shared
natural resources (Ostrom, 1990). Individual software
developers make choices about the extent to which they
contribute to the joint production of digital artifacts and
the extent to which they free ride on the effort of others so
as to reap the benefits without paying the costs. In this


www.elsevier.com/locater/ijhcs
dx.doi.org/10.1016/j.ijhcs.2007.08.002
mailto:jtenenbg@u.washington.edu
http://faculty.washington.edu/jtenenbg/

J. Tenenberg | Int. J. Human-Computer Studies 66 (2008) 484-494 485

paper, an institutional analysis perspective is used in
presenting a set of theoretical results and an analytical
framework recently developed in game theory, political
economy, experimental economics, and natural resource
governance for the understanding and resolution of these
collective action problems. The novelty is in bringing these
insights to the enterprise of software development in both
commercial and academic settings.

Key to this social science research is its focus on the
institutions that people develop to organize their collective
action. North (1990) defines institutions as “‘the rules of the
game in a society or, more formally, ... the humanly
devised constraints that shape human interaction.” These
institutions indicate what people are permitted, required,
and prohibited from doing, under what circumstances, and
under what costs if they fail to do so. “Institutions” and
“rules” will be used synonymously throughout the balance
of this paper. Understanding the importance of institutions
for shaping individual and social behavior within software
development teams makes these institutions more amen-
able to intentional human design.

The paper will be structured as follows. I will begin by
discussing existing accounts of forms of organization for
the management of commercial software teams. These are
centered around relationships of control between managers
and developers to increase the likelihood that developer
effort will be directed toward achieving organizational
goals. These accounts, however, do not provide a
sufficiently fine-grained analytic understanding of how to
resolve these problems of cooperation. I then draw on
research from experimental economics, computer simula-
tion in social science, and natural resource governance to
highlight a set of key theoretical principles associated with
institutions that shape human behavior in collective action
settings. These highlight the importance of face-to-face
communication, repeated interactions, monitoring of rule
compliance, and sanctions for non-compliance. Following
this will be a discussion of an analytic framework for
understanding institutions in existing collective action
settings. This framework is useful for developing a fine-
grained understanding of particular institutional forms in
existing collective action settings.

I then provide an empirical case study of software
teamwork within an academic setting. This case study
shows, first, how to apply the analytic framework on an
actual collective action situation. Second, it demonstrates
how the theoretical understandings can be used as a basis
to account for outcomes within this setting. And third, it
provides an example of a particular institutional arrange-
ment that elicits high levels of cooperation and low levels of
free riding within a real-world setting. Finally, I reiterate
the argument for the value of the institutional analytic
approach, and summarize implications for both research
and practice. For research, these include the use of the
analytic tools and theoretical understandings in the design
of subsequent studies to examine the relationship between
different institutions and their effectiveness in eliciting

cooperation. For practice, these include establishing
conditions that enable self-governance among developers
to emerge, and seeking to reduce the costs of monitoring
and sanctioning.

2. Background literature
2.1. Forms of control in commercial software teams

Miller (1990) states the central collective action problem
associated with teamwork:

In [a simple team setting] . .. individuals would be better
off working hard than shirking. ... If the other works
hard, each person is better off shirking. If the other one
shirks, each is better off shirking. Each person has a
dominant strategy to shirk, despite the fact that [they]
are worse off when each chooses his or her dominant
strategy.

Within teams, including software development teams, the
pursuit of individual self-interest can lead to social
inefficiency, what we have been calling a collective action
problem (Ostrom, 1990) (or, what is sometimes termed a
social dilemma (Miller, 1990)). There are always incentives
to obtain the benefits associated with team-based produc-
tion without carrying out a fair share of the work, what we
have been calling shirking, or free riding. How then do
individuals organize so as to get the benefits of collective
action when they face social dilemmas? How do they
constrain their own and one another’s selfish impulses for
greater individual and collective benefit?

Much of the management science literature on software
team organization is centered on the issue of control of
software development labor. According to Kirsch et al.
(2002), ““[c]ontrol is defined as the set of mechanisms
designed to motivate individuals to work in such a way that
desired objectives are achieved”. Borrowing from Ouchi
(1979), Henderson and Lee (1992) take control to require
monitoring and evaluation of both software developer
behavior and outcomes. They consider that there are two
main sources of control within a software development
organization: managerial and team-member control. They
argue that both forms of control are necessary for effective
software teamwork, but that they are differentially suited
to different kinds of monitoring and evaluation.

[M]anagerial control appears more effective when it is
behavior oriented while team member control is more
effective when it is outcome oriented. This suggests that
effective teams have a manager with the skills and
capabilities to influence how work is accomplished while
the pressure to meet deadlines and commitments arises
from one’s peers (Henderson and Lee, 1992).

Kirsch (1997) develops an alternative control taxonomy
for software teams. She takes behavioral and outcome
control as basic control regimes that are primarily the
responsibility of hierarchical management structures.



Download English Version:

https://daneshyari.com/en/article/400768

Download Persian Version:

https://daneshyari.com/article/400768

Daneshyari.com


https://daneshyari.com/en/article/400768
https://daneshyari.com/article/400768
https://daneshyari.com/

