
An environment for End-User Development of Web mashups$

Giuseppe Ghiani a, Fabio Paternò a,n, Lucio Davide Spano b, Giuliano Pintori a

a CNR-ISTI, Italy
b University of Cagliari, Italy

a r t i c l e i n f o

Article history:
Received 1 October 2014
Received in revised form
11 September 2015
Accepted 20 October 2015
Communicated by Oulasvirta Antti
Available online 1 December 2015

Keywords:
End User Development
Web mashups
User interface development tools

a b s t r a c t

End-User Development aims to find novel ways that are suitable and intuitive for end users to create
their own applications. We present a graphical environment in which users create new mashups by
directly selecting interaction elements, content and functionalities from existing Web applications
without requiring the intervention of expert developers. Then, users just need to exploit a copy–paste
metaphor to indicate how to compose the selected interactive content and functionalities in the new
mashup. The environment is enabled by a Web-based platform accessible from any browser, and is
suitable for users without particular programming skills. We describe the architecture of our platform
and how it works, including its intelligent support, show example applications, and report the results of
first user studies.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the penetration of Internet applications in all
work and leisure activities has made it possible for people to use
computers in an increasing number of possible contexts, and for
an increasingly wide range of tasks. However, end users have a
wide variety of interests and requirements, and existing applica-
tions often do not support directly the wide dynamic set of tasks
they want to accomplish. In order to fill this gap, it is useful to
provide environments that allow them to obtain applications that
better fit their needs. Indeed, even if they are not professional
developers, they are becoming more and more familiar with
software technologies and this sets the ground for creating tools
for crafting their own solutions. End-User Development (EUD) is a
recent discipline that refers to the approaches allowing people
without experience in programming to develop their applications,
or at least modify them, in order to better support their specific
tasks (Lieberman et al., 2006). In this area various research works
have started to investigate novel solutions that are suitable and
pleasant for end users to create new applications. In Ko et al.
(2011) several approaches to end-user software engineering have
been reviewed, but the authors dedicated limited attention to
emerging EUD approaches in Web environments, which have
started to be addressed by recent work (Cypher et al., 2010) and
are discussed in the related work section.

In this paper we focus on the Web, since it allows easy access to
large amounts of data and applications (e.g. e-commerce sites,
social networks, e-mail, etc.). In addition, the Web is a flexible
platform that, differently from native applications, implicitly
allows customization. Web pages are defined in HTML, and are
represented in the browser by a Document Object Model (DOM).
The DOM is inspectable through the browser, fromwhere it can be
manipulated in order to modify the content as well as the behavior
of the page (i.e. make the page react in a different way when some
events occur). It is worth noting that, differently from native
applications, such customizations can be made directly by the
user, without involving the original page developers.

We moreover focus on end user developers aiming to create
new applications starting with components of existing interactive
Web applications, i.e. a mashup editor. From the Human–Com-
puter Interaction perspective, mashup refers to a composition of
contents and/or features from several sources that determine new
client-side interactive applications. In general, Web mashups can
combine data, presentations and functionalities from different
Web sites into a single, novel, Web application. For example, most
of the first mashups were created to combine geographical maps
or to better manage photos. Usually, mashup applications are
created by developers exploiting Web APIs or programmatically
gathering content from existing Web pages. Therefore, creating
mashups has required some technical background (such as pro-
gramming skills) that most Web end users do not have. Some
initial ideas for creating Web mashups that we consider in this
work were introduced in Ghiani et al. (2011). However, that
solution still required manual intervention by people with good
technical knowledge in order to create connections for enabling

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2015.10.008
1071-5819/& 2015 Elsevier Ltd. All rights reserved.

☆This paper has been recommended for acceptance by Oulasvirta Antti.
n Corresponding author. Tel.: þ39 0503153066; fax: þ39 0503152810.
E-mail address: fabio.paterno@isti.cnr.it (F. Paternò).

Int. J. Human-Computer Studies 87 (2016) 38–64

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2015.10.008
http://dx.doi.org/10.1016/j.ijhcs.2015.10.008
http://dx.doi.org/10.1016/j.ijhcs.2015.10.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.10.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.10.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.10.008&domain=pdf
mailto:fabio.paterno@isti.cnr.it
http://dx.doi.org/10.1016/j.ijhcs.2015.10.008


communication among the components of different Web appli-
cations, it was limited in terms of components types that could be
combined, and did not provide any support for sharing mashups.

In this paper, we present the MashupEditor, a novel environ-
ment based on an intelligent environment for End-User Develop-
ment of Web mashups. The MashupEditor's main goals are: to
allow end users to create Web mashups by reusing existing
components from different applications, regardless of their
technical skills; to create novel ways to combine such compo-
nents; to support sharing of the results' compositions with other
people, possibly via social networks. The environment does not
require knowledge of JavaScript, which is often the most proble-
matic part in Web applications development for non-professional
end users. In the composition process, end users exploit an
intuitive copy–paste metaphor, which has been inspired by the
programming by example paradigm. In particular, copy–paste
examples provided by the users are used to infer how to compose
the components of the existing Web applications.

More precisely, the main contributions of the proposed envir-
onment are:

� An editor to create new mashup widgets from components of
existing Web applications simply using a Web browser, without
specific extensions, and a proxy-server that includes scripts that
allow users to select the desired components by direct
manipulation;

� A method and a supporting tool for composing Web compo-
nents from different applications through an intuitive and
familiar copy–paste metaphor for creating novel Web
applications;

� A solution for preserving users' selected preferences regarding
the application output when new queries to remote services are
submitted.

In the paper, after discussing related work, we describe an
example application of our environment. We detail the underlying
architecture and functionalities of the environment in order to
explain how the intelligent support is provided to users. Then, we
report on evaluation of the MashupEditor functionalities, which
has been carried out through two user tests. Lastly, we draw some
conclusions and provide indications for further work.

2. Related work

In this section, we discuss various contributions relevant to the
approach for the creation of Web mashup applications that is
presented in this paper. We briefly discuss a representative set of
various types of mashup environments for Web applications,
already proposed by academic and industrial research groups. We
then discuss some of them focusing on criteria relevant from the
perspective of end user composition and development.

2.1. Approaches to mashup applications

The termmashup has been used in both research and industrial
settings for defining a broad set of environments able to create
new applications by composing information from different sour-
ces. Generally speaking, different types of mashups are possible
depending on the aspects that they are able to compose (data,
functionalities, user interfaces). Such an approach is better sup-
ported by the Web architecture, and hence has found its main
applications in Web settings.

A first distinction among mashups can be made according to
their targets: enterprises and consumers. Enterprise mashups are
tools for combining resources, applications and heterogeneous

data from various sources in order to solve enterprise-related
problems. For example, EzWeb Enterprise Mashup (Soriano
et al., 2007) is a mashup platform developed by Telefónica1 tar-
geted to enterprises. A catalog is available on the platform con-
taining a set of predefined gadgets, which can be composed
through a piping metaphor defining the execution flow. It is pos-
sible to have several pipes running at the same time. Other
examples of such kind of mashup tools are IBM Damia and SAP
Research Rooftop (Hoyer et al., 2009). Consumer mashups, aimed
at Internet users, exemplify the capabilities of Web 2.0 by com-
bining diverse kinds of data from several public sources into
information that is then displayed on a Web browser. One example
in this area is Yahoo! Pipes2, a Web environment to make mashups
that exploits data from sources such as RSS feeds or Web services.
The created mashups can be saved and made publicly available.
Both enterprise and consumer mashups are devoted to providing
quick solutions to narrow scope problems. In this work, we aim to
provide an environment for consumer mashups, exploiting exist-
ing Web applications as the information source, rather than pro-
viding a set of predefined gadgets created by professional devel-
opers. In addition, we avoid the usage of programming languages
(based e.g. on imperative or data-flow constructs). In order to
define the mashup's behavior, we utilize an intelligent backend for
tracking the user's actions and rely on well-known UI interactions
(such as copy-and-paste).

According to their architecture, mashup systems can also be
classified as client-based or server-based. The client-based ones
rely on a Web browser to combine and show data, while server-
based mashup systems instead perform analyses and combina-
tions within a Web server, and subsequently forward data to the
Web browser for visualization. In this respect, we have a mixed
approach, since with our tool the composition is performed on the
client side, and it also exploits functionalities provided by a proxy-
server.

In general, interest in how to support EUD through mashups
has recently increased. Some authors (Soi et al. 2014) have even
considered adopting a domain specific approach, which prioritizes
intuitiveness over expressive power, even if they mention that
developing mashup platforms—domain-specific or not—is com-
plex and time consuming. In the following, we discuss some work
carried out in this area and indicate how we contribute to the state
of art.

2.2. Page customization

Different tools allow the user to change the layout and/or the
behavior of existing Web pages in order to better tailor them to
different needs, with different relevant techniques.

A simple but effective way to customize a Web page is to
provide an entry point (e.g. a browser extension) for injecting
JavaScript code into it. For instance, Greasemonkey3 is an exten-
sion for the Mozilla Firefox browser that allows choosing from
among a set of custom scripts when a Web page is accessed. The
tool not only lets the user automatically add new contents and
combine them with data from other pages, but also hides texts or
images (e.g. unwanted advertisements), adds shortcuts to external
pages, fills in forms and compares data from several Web sites (e.g.
prices from online stores). In order to exploit Greasemonkey, users
typically write JavaScript code for accessing and modifying the
page Document Object Model (DOM). Scripts are stored in text

1 http:// www.telefonica.com
2 http://pipes.yahoo.com/pipes/
3 https://addons.mozilla.org/it/firefox/addon/greasemonkey

G. Ghiani et al. / Int. J. Human-Computer Studies 87 (2016) 38–64 39

http://www.telefonica.com
http://pipes.yahoo.com/pipes/
https://addons.mozilla.org/it/firefox/addon/greasemonkey


Download English Version:

https://daneshyari.com/en/article/401112

Download Persian Version:

https://daneshyari.com/article/401112

Daneshyari.com

https://daneshyari.com/en/article/401112
https://daneshyari.com/article/401112
https://daneshyari.com

