
Knowledge transfer in pair programming: An in-depth analysis$

Laura Plonka a, Helen Sharp a,n, Janet van der Linden a, Yvonne Dittrich b

a Centre for Research in Computing, The Open University Milton Keynes, UK
b Software Development Group IT University of Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 24 April 2014
Received in revised form
25 July 2014
Accepted 1 September 2014
Communicated by Francoise Detienne
Available online 16 September 2014

Keywords:
Pair programming
Knowledge transfer
Interaction analysis
Cognitive apprenticeship
Qualitative analysis

a b s t r a c t

Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming, little is
known about how knowledge transfer is achieved in this setting. This is particularly pertinent for
novice�expert constellations, but knowledge transfer takes place to some degree in all constellations.
We ask “what does it take to be a good “expert” and how can a “novice” best learn from a more
experienced developer?”. An in-depth investigation of video and audio excerpts of professional pair
programming sessions using Interaction Analysis reveals: six teaching strategies, ranging from “giving
direct instructions” to “subtle hints”; and challenges and benefits for both partners. These strategies are
instantiations of some but not all teaching methods promoted in cognitive apprenticeship; novice
articulation, reflection and exploration are not seen in the data. The context of pair programming
influences the strategies, challenges and benefits, in particular the roles of driver and navigator and agile
prioritisation which considers business value rather than educational progression. Utilising these
strategies more widely and recognizing the challenges and benefits for both partners will help
developers to maximise the benefits from pairing sessions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

“Two heads are better than one” is a common idiom referring
to the advantages of collaborative work. The value of collaboration
is explicitly encouraged in software development through a
practice known as pair programming. Pair programming (PP) is a
software development technique where two developers work
closely together to solve a development problem (Williams and
Kessler, 2002; Beck, 1999).

Several benefits of PP have been claimed including improved
understandability and maintainability of code and design
(Vanhanen and Korpi, 2007; Vanhanen and Lassenius, 2007),
decreased defect rates (Phaphoom et al., 2011; Jensen, 2003;
Pandey et al., 2003; Cockburn and Williams, 2001; Phongpaibul
and Boehm, 2006) and knowledge transfer (Luck, 2004; Katriou
and Tolias, 2009; Pandey et al., 2003; Sanders, 2002; VanDeGrift,
2004; Vanhanen and Korpi, 2007; Vanhanen and Lassenius, 2005;
Vanhanen et al., 2007; Williams, 1999). This paper focuses on
knowledge transfer in PP. Indeed, Salinger et al. (2013) have
identified PP roles other than driver and navigator, including one
called task expert which brings in task expertise relevant to the

session. This acknowledges the fact that all sessions include some
level of knowledge transfer.

Most software development teams are composed of developers
with different knowledge levels of some kind, including different
programming experiences, different domain expertise and knowl-
edge about different technologies. PP is one way to share their
knowledge with other team members while also achieving mean-
ingful work. In some cases, knowledge transfer is the explicit goal
of a PP session (Plonka et al., 2012). This is common when a more
experienced developer teaches a less experienced developer, for
example, to bring new staff up to speed (Belshee, 2005; Williams
et al., 2004). However, given that developers never have identical
knowledge, a certain degree of knowledge transfer would be
expected within every PP constellation.

Pairing with someone who has a different knowledge level can
be problematic (Begel and Nagappan, 2008; Cao and Xu, 2005) and
developers tend to interact differently in this situation in compar-
ison to pairing with other developers with similar knowledge
levels (Chong and Hurlbutt, 2007; Cao and Xu, 2005). For example,
Plonka et al. (2012) showed that less knowledgeable developers
(novices) can disengage in PP sessions and can sometimes not
follow their more knowledgeable partner (expert).

Although knowledge transfer is widely reported as a benefit of
PP, there is currently not much insight into how developers
approach this in practice nor how knowledge transfer can be
improved. What does it take to be a good “expert” and how to
learn best as a “novice”? What are the challenges? Here, we

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2014.09.001
1071-5819/& 2014 Elsevier Ltd. All rights reserved.

☆This paper has been recommended for acceptance by Francoise Detienne.
n Corresponding author.
E-mail addresses: Laura.Plonka@open.ac.uk (L. Plonka),

Helen.Sharp@open.ac.uk (H. Sharp),
Janet.VanderLinden@open.ac.uk (J. van der Linden), ydi@itu.dk (Y. Dittrich).

Int. J. Human-Computer Studies 73 (2015) 66–78

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2014.09.001
http://dx.doi.org/10.1016/j.ijhcs.2014.09.001
http://dx.doi.org/10.1016/j.ijhcs.2014.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2014.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2014.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2014.09.001&domain=pdf
mailto:Laura.Plonka@open.ac.uk
mailto:Helen.Sharp@open.ac.uk
mailto:Janet.VanderLinden@open.ac.uk
mailto:ydi@itu.dk
http://dx.doi.org/10.1016/j.ijhcs.2014.09.001


present an in-depth investigation of knowledge transfer in profes-
sional PP sessions to address the following research questions:

� RQ1: What teaching strategies do developers use in pair
programming?

� RQ2: In which ways do the roles of driver and navigator
influence knowledge transfer in pair programming?

� RQ3: What challenges do developers with different knowledge
levels face when pairing together?

These three questions are addressed through a qualitative
analysis (using Interaction Analysis (Jordan and Henderson,
1995)) of video recordings of professional developers working
together on their day to day tasks. As a result, we identified a set of
teaching strategies and behaviours that are related to the roles of
driver and navigator and influence teaching and learning, together
with associated challenges and benefits for both pairing partners.
An increased awareness of working practices for knowledge
transfer in PP will help developers to maximise the benefits from
such sessions.

The remainder of the paper is organized as follows. Section 2
overviews existing research on knowledge transfer in PP.
In Section 3, we present the research methodology including data
collection and analysis approach, followed by the findings of this
study (Section 4). In Section 5, the findings are discussed with
respect to existing literature and Section 6 discusses the limita-
tions of the study. The last Section 7 presents conclusions and
implications for developers.

2. Knowledge transfer in pair programming

The positive effect of PP on knowledge transfer, no matter what
may be the knowledge levels of the developers, is widely acknowl-
edged across a range of studies in industry (Luck, 2004; Katriou
and Tolias, 2009), (Vanhanen et al., 2007; Vanhanen and Korpi,
2007; Pandey et al., 2003) and academia (Sanders, 2002;
Vanhanen and Lassenius, 2005; VanDeGrift, 2004; Williams,
1999). Knowledge transfer is also one of the main perceived
benefits according to two surveys: Schindler (2008) surveyed
developers and managers in 42 Austrian companies; and Begel
and Nagappan (2008) conducted a web-based survey of 487
Microsoft developers. Three industrial case studies (Luck, 2004;
Vanhanen and Korpi, 2007; Vanhanen et al., 2007) report more
detail on developers' perceptions. In (Luck, 2004), developers
report that PP increased their knowledge of the code and in
(Vanhanen and Korpi, 2007), developers report increased knowl-
edge of the software system. Gaining knowledge about develop-
ment tools, work practices, refactoring old code, new technologies
and programming languages are all perceived benefits reported in
(Vanhanen et al., 2007).

Belshee (2005) suggested very frequent changes of the pair
constellation to promote fast knowledge transfer and to spread
knowledge among different team members. Pandey et al. (2003),
suggests that this can reduce project risk because multiple devel-
opers are familiar with the code and there is less reliance on one
individual. Increased flexibility also means that developers can
pick up a variety of different tasks. For example, Hodgetts (2004)
reports on one team that had only one database expert, but too
much work for one expert. When this caused a bottleneck, the
team decided to use PP to spread the database knowledge among
developers. They learned quickly through pairing with the data-
base expert and were then able to do database tasks by
themselves.

PP has also been studied in the context of training and
mentoring, but not always with a positive effect. For example, in

the context of developing firmware for processors, Greene (2004)
found that the training effect of PP was not as high as expected,
which may be due to the very specialized and complex domain
knowledge needed in that context. On the other hand, Williams
et al. (2004) investigated PP for mentoring and hence focused on
pair constellations with different levels of expertise. They exam-
ined the relationship between PP and Brooks' Law1 based on a
survey and a case study. They found that PP reduced the mentor-
ing needed per day from 37% of a developer's time to 26% of their
time, and that PP reduced the time for a developer to be
independently productive from 27 to 12 days.

The developers' view of combining different knowledge levels
when pairing was investigated by Jensen (2003) and Vanhanen
et al. (2007), Vanhanen and Lassenius (2007). Jensen, (2003) found
that pairing developers with similar expertise was counter-pro-
ductive, while Vanhanen and Lassenius (2007) found two good
partner combinations: when the pair consists of a senior and a
junior developer; or partners have complementary knowledge.

When asked about the challenges of PP, developers surveyed by
Begel and Nagappan (2008) perceived working with someone with
different skills as one of the main challenges. Williams and Kessler
(2002) also point out that pairing experts and novices can be
problematic. Novices can slow down experts and some experts
might not have a mentoring attitude.

One study by Cao and Xu (2005) examined the interactions of
pairs in more detail according to their expertise. They assigned
students according to expertise and found that the expert asked
for the novices' opinions frequently at the beginning of the session
but stopped asking after realising that they did not get valuable
information.

Although there is some evidence that pairing developers with
different knowledge is useful but challenging, there is currently a
lack of understanding about what interactions take place to
achieve knowledge transfer and what challenges developers face.

3. Research design

It is known that people working jointly on a computer use a
combination of gesture, language and screen object manipulation
to construct an understanding of the problem (see (Roschelle and
Clancey, 1992) for example). In PP developers work closely
together on one computer and all these aspects needs to be
considered when analysing knowledge transfer between the
developers. For this study, we chose a data gathering approach
that captures rich data about the PP sessions and an analysis
approach that allows for a detailed investigation of how human
beings interact with each other, and with objects in their environ-
ment (both verbally and non-verbally) (Jordan and Henderson,
1995).

3.1. Data gathering

Different aspects of the PP session were captured by using
a combination of data gathering methods

� Audio and video recordings were used to record the developers'
interactions during their PP sessions: audio recordings of all
verbal communication; a video of the programmers; and a full-
resolution recording of the screen, showing the code and
capturing the developers' computer activities. These were fully
synchronized into a single video file (see Fig. 1).

1 Brooks Law says that “adding manpower to a late software project makes it
later” (Brooks, 1975).

L. Plonka et al. / Int. J. Human-Computer Studies 73 (2015) 66–78 67



Download English Version:

https://daneshyari.com/en/article/401142

Download Persian Version:

https://daneshyari.com/article/401142

Daneshyari.com

https://daneshyari.com/en/article/401142
https://daneshyari.com/article/401142
https://daneshyari.com

