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In this paper, by the methods of partial fraction decomposition and
generating function, we give an algorithm for computing mixed
sums of products of l Bernoulli polynomials and k − l Euler polyno-
mials, which are of the form
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where λ = (λ1, . . . , λk), and λ1, . . . , λk are nonzero rational num-
bers. Moreover, some special sums are presented as examples.
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1. Introduction and preliminary results

The Bernoulli polynomials Bn(x) and Euler polynomials En(x) play important roles in various
branches of mathematics. They are defined by the generating functions
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They also satisfy the difference equations

Bn(x + 1) − Bn(x) = nxn−1 and En(x + 1) + En(x) = 2xn (1.2)

and multiplication theorems
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(see Abramowitz and Stegun, 1992, Chapter 23, and Comtet, 1974, Section 1.14). Additionally, the
rational numbers Bn = Bn(0) and integers En = 2n En(1/2) are called Bernoulli numbers and Euler
numbers, respectively.

Many generalizations of these polynomials have been introduced and studied. For example, the
higher order Bernoulli polynomials B(α)

n (x) and higher order Euler polynomials E(α)
n (x), each of de-

gree n in x and in α, are defined by the generating functions(
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Clearly, we have B(1)
n (x) = Bn(x) and E(1)

n (x) = En(x).
These polynomials and numbers satisfy a large number of identities. In particular, Dilcher (1996)

studied the sums of products of arbitrarily many Bernoulli numbers, Bernoulli polynomials, Euler
numbers, and Euler polynomials. He found that

B(k)
n (y) =

[
tn

n!
](

t

et − 1

)k

eyt =
∑

j1+···+ jk=n
j1,..., jk�0

(
n

j1, . . . , jk

)
B j1(x1) · · · B jk (xk)

= (−1)k−1k

(
n

k

) k−1∑
j=0

(−1) j

{ j∑
i=0

(
k − j − 1 + i

i

)
s(k,k − j + i)yi

}
Bn− j(y)

n − j
, (1.6)

where(
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j1! j2! · · · jk!
are the multinomial coefficients, s(n,k) are the Stirling numbers of the first kind, and y = x1 +· · ·+xk .
Based on this identity, we have
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Similarly, Dilcher’s result on sums of products of Euler polynomials is
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