An algorithm for computing mixed sums of products of Bernoulli polynomials and Euler polynomials

Lei Feng, Weiping Wang

School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China

A R T I C LE I N F O

Article history:

Received 22 August 2013
Accepted 22 January 2014
Available online 31 January 2014

Keywords:

Bernoulli polynomials
Euler polynomials
Generating functions
Partial fraction decompositions
Sums of products

$$
\begin{aligned}
& \text { A B S T R A C T } \\
& \hline \text { In this paper, by the methods of partial fraction decomposition and } \\
& \text { generating function, we give an algorithm for computing mixed } \\
& \text { sums of products of } l \text { Bernoulli polynomials and } k-l \text { Euler polyno- } \\
& \text { mials, which are of the form } \\
& \qquad \begin{array}{r}
T_{n, k}^{\lambda}(y ; l, k-l):=\sum_{\substack{j_{1}+\cdots+j_{k}=n \\
j_{1}, \ldots, j_{k} \geqslant 0}} \prod_{i=1}^{k} \lambda_{i}^{j_{i}}\binom{n}{j_{1}, \ldots, j_{k}} \\
\qquad \times \prod_{p=1}^{l} B_{j_{p}}\left(x_{p}\right) \prod_{q=l+1}^{k} E_{j_{q}}\left(x_{q}\right),
\end{array}
\end{aligned}
$$

where $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, and $\lambda_{1}, \ldots, \lambda_{k}$ are nonzero rational numbers. Moreover, some special sums are presented as examples.
© 2014 Elsevier Ltd. All rights reserved.

1. Introduction and preliminary results

The Bernoulli polynomials $B_{n}(x)$ and Euler polynomials $E_{n}(x)$ play important roles in various branches of mathematics. They are defined by the generating functions

$$
\begin{equation*}
\frac{t \mathrm{e}^{x t}}{\mathrm{e}^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!} \quad \text { and } \quad \frac{2 \mathrm{e}^{x t}}{\mathrm{e}^{t}+1}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!} \tag{1.1}
\end{equation*}
$$

[^0]They also satisfy the difference equations

$$
\begin{equation*}
B_{n}(x+1)-B_{n}(x)=n x^{n-1} \quad \text { and } \quad E_{n}(x+1)+E_{n}(x)=2 x^{n} \tag{1.2}
\end{equation*}
$$

and multiplication theorems

$$
\begin{align*}
& B_{n}(m x)=m^{n-1} \sum_{k=0}^{m-1} B_{n}\left(x+\frac{k}{m}\right) \text { for } m=1,2, \ldots, \tag{1.3}\\
& E_{n}(m x)= \begin{cases}m^{n} \sum_{k=0}^{m-1}(-1)^{k} E_{n}\left(x+\frac{k}{m}\right) & \text { for } m=1,3, \ldots, \\
-\frac{2}{n+1} m^{n} \sum_{k=0}^{m-1}(-1)^{k} B_{n+1}\left(x+\frac{k}{m}\right) & \text { for } m=2,4, \ldots\end{cases} \tag{1.4}
\end{align*}
$$

(see Abramowitz and Stegun, 1992, Chapter 23, and Comtet, 1974, Section 1.14). Additionally, the rational numbers $B_{n}=B_{n}(0)$ and integers $E_{n}=2^{n} E_{n}(1 / 2)$ are called Bernoulli numbers and Euler numbers, respectively.

Many generalizations of these polynomials have been introduced and studied. For example, the higher order Bernoulli polynomials $B_{n}^{(\alpha)}(x)$ and higher order Euler polynomials $E_{n}^{(\alpha)}(x)$, each of degree n in x and in α, are defined by the generating functions

$$
\begin{equation*}
\left(\frac{t}{\mathrm{e}^{t}-1}\right)^{\alpha} \mathrm{e}^{x t}=\sum_{n=0}^{\infty} B_{n}^{(\alpha)}(x) \frac{t^{n}}{n!} \quad \text { and } \quad\left(\frac{2}{\mathrm{e}^{t}+1}\right)^{\alpha} \mathrm{e}^{\mathrm{xt}}=\sum_{n=0}^{\infty} E_{n}^{(\alpha)}(x) \frac{t^{n}}{n!} . \tag{1.5}
\end{equation*}
$$

Clearly, we have $B_{n}^{(1)}(x)=B_{n}(x)$ and $E_{n}^{(1)}(x)=E_{n}(x)$.
These polynomials and numbers satisfy a large number of identities. In particular, Dilcher (1996) studied the sums of products of arbitrarily many Bernoulli numbers, Bernoulli polynomials, Euler numbers, and Euler polynomials. He found that

$$
\begin{align*}
B_{n}^{(k)}(y) & =\left[\frac{t^{n}}{n!}\right]\left(\frac{t}{\mathrm{e}^{t}-1}\right)^{k} \mathrm{e}^{y t}=\sum_{\substack{j_{1}+\ldots+j_{k}=n \\
j_{1}, \ldots, j_{k} \geqslant 0}}\binom{n}{j_{1}, \ldots, j_{k}} B_{j_{1}}\left(x_{1}\right) \cdots B_{j_{k}}\left(x_{k}\right) \\
& =(-1)^{k-1} k\binom{n}{k} \sum_{j=0}^{k-1}(-1)^{j}\left\{\sum_{i=0}^{j}\binom{k-j-1+i}{i} s(k, k-j+i) y^{i}\right\} \frac{B_{n-j}(y)}{n-j}, \tag{1.6}
\end{align*}
$$

where

$$
\binom{n}{j_{1}, \ldots, j_{k}}=\frac{n!}{j_{1}!j_{2}!\cdots j_{k}!}
$$

are the multinomial coefficients, $s(n, k)$ are the Stirling numbers of the first kind, and $y=x_{1}+\cdots+x_{k}$. Based on this identity, we have

$$
\begin{aligned}
B_{n}^{(2)}(y)= & -(n-1) B_{n}(y)+n(y-1) B_{n-1}(y) \\
B_{n}^{(3)}(y)= & \frac{(n-1)(n-2)}{2} B_{n}(y)-\frac{n(n-2)}{2}(2 y-3) B_{n-1}(y) \\
& +\frac{n(n-1)}{2}(y-1)(y-2) B_{n-2}(y) .
\end{aligned}
$$

Similarly, Dilcher's result on sums of products of Euler polynomials is

https://daneshyari.com/en/article/401152

Download Persian Version:
https://daneshyari.com/article/401152

Daneshyari.com

[^0]: E-mail addresses: larryleifeng@163.com (L. Feng), wpingwang@yahoo.com (W. Wang).

