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We present an algorithm that recovers a decomposition of an inte-
ger N as sum of two squares from an approximation to one of the
summands. It is based on Coppersmith’s linearization technique
which, applied directly to this problem, requires an approximation
error smaller than N1/6. Our algorithm performs a two-round lin-
earization and allows approximation errors up to N1/4.
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1. Introduction

A well-known theorem of Fermat characterizes those integers which can be expressed as the sum
of two squares. This property depends on the factorization of the integer, from which a sum of two
squares decomposition (if exists) can be efficiently computed (Hardy et al., 1990). In this article we
address the problem of recovering in polynomial time such a decomposition without access to the
factorization, but from approximations to its summands. More generally, we look for integers A, B
such that N = r A2 + sB2; with the positive integers N, r, s and approximations A0, B0 to A and B
(respectively) as input data.

This task fits in the general setting in which small integer roots of a multivariate polynomial
equation are searched for, which can be addressed using the linearization techniques introduced in
Coppersmith (1997). We analyze the performance of these methods in terms of the size of the ap-
proximation errors which can be recovered, and present a combined technique which improves that
error tolerance. In the setting we consider, both approximation errors are uniformly bounded by a sin-
gle parameter �. Note that, if we only have access to an approximation A0 to one of the summands
with maximum error �A , i.e. A0 − �A � A � A0 + �A ; the other summand B lies in the interval:
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s

]
.

The approximation B0 and maximum error �B implicit in this expression satisfy r A0�A = sB0�B .
This permits using the decomposition recovery results we prove (which require approximations to
both summands) when only one approximation is given.

2. Background

Geometry of Numbers is the theory that deals with lattices, i.e., discrete subgroups of (Rm,+). The
search of short elements in lattices is a key problem in this area and some interesting facts related
to its computational complexity have been discovered, as the connection between the worst-case and
the average-case complexity. The books (Gruber and Lekkerkerker, 1987; Micciancio and Goldwasser,
2002) are good examples of the vast literature dedicated to this theory, which has many applications
in Computer Algebra and Cryptology.

Minkowski’s Convex Body Theorem is a fundamental result in this theory, implying that in any
lattice Λ there is a nonzero element whose norm is upper bounded by 2(Γ (1 + n/2)vol Λ)1/n/

√
π ,

where Γ denotes the Euler Gamma function, n is the lattice rank, and vol Λ its volume, i.e.

lim
t→∞

voln(t)

#(Λ ∩ B(t))
,

being B(t) the Euclidean ball of radius t centered at the origin and voln(t) the volume of an
n-dimensional Euclidean ball of radius t . The so-called Gaussian heuristic (Nguyen, 2010) assumes
that the ratio above is a reasonable approximation to the lattice volume even for small t . We use this
heuristic for the estimation of the performance of the simple linearization approach in Subsection 3.1.
Namely, we might expect that a ball of radius significantly smaller than (vol Λ)1/n does not contain
more than three lattice elements: a nonzero one, its opposite, and the origin.

Every lattice is a free abelian group and can be described, therefore, by means of a basis, but not
every basis is equally useful. In the case of lattices of rank two, optimization problems are efficiently
solved using the following concept, implicit in Lagrange work (Lagrange, 1773), which was developed
and popularized by Gauss (1966).

Definition 1. An ordered basis (u,v) of a lattice Z〈u,v〉 is called reduced if the following holds:

‖u‖ � ‖v‖ � ‖u − v‖,‖u + v‖.

There is a polynomial time algorithm which obtains a reduced basis for any two-rank lattice Λ.
This basis contains the smallest nonzero lattice vector u, and the smallest in Λ\〈u〉 as well. On the
other hand, a reduced basis of a lattice is as closest to orthogonal as possible. This gives the following
result, which we will use in next section.

Lemma 2. (See Gómez et al., 2006, Lemma 3.) Let {u,v} ⊂ R
m be a reduced basis of a two-rank lattice Λ

and x ∈ Λ. For the unique pair of integers (α,β) ∈ Z
2 that satisfies x = αu + βv, we also have:

‖αu‖,‖βv‖ � 2√
3
‖x‖.

The neat reduction that Gauss’ algorithm provides in the two-rank case is far from being obtained
for general lattices. Several reduction definitions have been proposed, for which one has typically
to choose between computational efficiency and good reduction parameters. The successful LLL al-
gorithm (Lenstra et al., 1982) constitutes a good trade-off, computing in polynomial time a basis
reduced enough for many applications. Among these, the linearization techniques introduced by Cop-
persmith (1997), which compute bounded integer roots of univariate polynomials over a residue ring
or bivariate integer polynomials. More explicitly, in the second case:
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