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In this paper we show how to find a closed form solution for third
order difference operators in terms of solutions of second order
operators. This work is an extension of previous results on finding
closed form solutions of recurrence equations and a counterpart
to existing results on differential equations. As motivation and
application for this work, we discuss the problem of proving
positivity of sequences given merely in terms of their defining
recurrence relation. The main advantage of the present approach to
earlier methods attacking the same problem is that our algorithm
provides human-readable and verifiable, i.e., certified proofs.
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1. Introduction

This paper presents an extension of the algorithm solver (Cha, 2011; Cha and van Hoeij, 2009;
Cha et al., 2010) that returns closed form solutions for second order linear difference equations to
third order linear difference equations. The solutions that we are looking for are in terms of (finite)
sums of squares. This is motivated by applying the algorithm for proving inequalities on special func-
tions, i.e., on expressions that may be defined in terms of linear difference equations with polynomial
coefficients. Conjectures about positivity of special functions arise in many applications in mathe-
matics and science. Proving them usually requires profound knowledge on relations between these
special functions. It is well known that there exist many algorithms for proving and finding special
function identities (Zeilberger, 1990; Chyzak, 2000; Petkovšek et al., 1996; Koutschan, 2010). For auto-
mated proving of special functions inequalities only few approaches exist. Gerhold and Kauers (2005),
Kauers (2006) introduced a method that is based on Cylindrical Algebraic Decomposition (CAD). This
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method has been proven to work well on many nontrivial examples (Gerhold and Kauers, 2006;
Pillwein, 2008), but even though correctness is easy to be seen, termination cannot be guaranteed,
hence it is not an algorithm in the strict sense. A first attempt to clarify the latter issue has been
made in Kauers and Pillwein (2010). One of the features of proofs of special functions identities is
that they usually come with a certificate, i.e., some easy to check identity that verifies the proof. The
CAD-based approach cannot hope to have a similar certificate in the near future. The method pre-
sented here is a first step toward human readable proofs of special functions inequalities, although
admittedly a representation in terms of sums of squares with positive coefficients is not expected to
exist for any given input. Besides this application, the results presented are of independent interest
as they provide difference case counterparts to results obtained for the differential case (Singer, 1985;
van Hoeij, 2007).

First we review the available results in the differential case. Let k be a differential field and
Ld ∈ k[∂], ∂ = d/dx be a linear homogeneous third order differential operator. Singer (1985) char-
acterizes when solutions of Ld can be written in terms of solutions of a second order operator in k̄[∂].
Van Hoeij (2007) handles the similar problem when the coefficients of the second order operator are
restricted to k and shows that it will be either of the following cases.

Case 1 Ld is the symmetric square of a second order operator Kd ∈ k[∂];
Case 2 Ld is gauge equivalent to a symmetric square of a second order operator Kd ∈ k[∂].

The definitions of symmetric products and gauge equivalence are recalled in Sections 2.3 and 2.4
below. The algorithm given in van Hoeij (2007) returns a second order differential operator, Kd ∈
k[d/dx], and a gauge transformation in k[∂] that sends solutions of the symmetric squares of Kd to
solutions of Ld for Case 2.

In the differential case, the symmetric square of Ld has order 5 if and only if we are in Case 1. In
this case, there is a simple formula that gives Kd . Case 2 is equivalent to the symmetric square of Ld
having order 6 and a first order right-hand side factor in k[∂] as well as a certain conic of Ld (Singer,
1985, Eq. 4.2.1) having a non-zero solution in k. Since for k = C(x) this conic is solvable over C(x),
the last condition becomes trivial in this case. The algorithm given in van Hoeij (2007) in the first
step checks the order of the symmetric square of Ld to distinguish the cases.

The difference case behaves differently; here we denote by D = C(x)[τ ] the ring of linear differ-
ence operators, where τ denotes the shift operator. Example 2.15 shows that the cases cannot be
distinguished according to the order of the symmetric squares when the coefficients are in C(x). To
set up a counterpart theorem for difference equations, this example shows that we need one more
transformation than that in the differential case. Furthermore in Case 1, the algorithm for finding the
second order operator is more complicated than in the differential case.

Summarizing, the ideas used in the differential case cannot be carried over immediately to the
difference case. Furthermore our aim is to have a closed form solution of the given input. Hence, if
a factorization is found that is not solvable, this fails to satisfy our goal. Thus we build on the ideas
of the algorithm solver (Cha, 2011; Cha and van Hoeij, 2009; Cha et al., 2010). Here we say that a
function is in closed form if it is a linear combination of elementary functions, special functions or
hypergeometric functions over C(x). For instance the modified Bessel function of the first kind is a
closed form solution of the second order operator Lb := zτ 2 − (2x + 2)τ + x + z.

The algorithm solver returns closed form solutions for second order linear difference operators. The
main idea of solver is to map the given operator L1 to an operator L2 of which a solution is known.
This transformation is a bijective map, called GT-transformation, that sends solutions of L1 to solutions
of L2. If a closed form solution to one of the operators is known, then by means of this transformation
the solution of the second operator can be constructed. For this purpose a table with second order
operators including parameters together with characteristic data (local data) has been constructed.
This local data can be computed for the given operator, the corresponding equivalent operator is
found by table look-up. Then by comparing parameters of the local data the GT-transformation can be
constructed. The characteristic data is described in Section 3. To cover the extension described here
the table has been extended so that we can give closed form solutions of certain third order linear
difference operators.
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