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Given a straight-line program whose output is a polynomial 
function of the inputs, we present a new algorithm to compute 
a concise representation of that unknown function. Our algorithm 
can handle any case where the unknown function is a multivariate 
polynomial, with coefficients in an arbitrary finite field, and 
with a reasonable number of nonzero terms but possibly very 
large degree. It is competitive with previously known sparse 
interpolation algorithms that work over an arbitrary finite field, 
and provides an improvement when there are a large number of 
variables.

Published by Elsevier Ltd.

1. Introduction

We consider the problem of interpolating a sparse multivariate polynomial F over Fq , the finite 
field of size q:

F =
t∑

�=1

c�ze�1
1 ze�2

2 · · · ze�n
n ∈ Fq[z1, . . . , zn]. (1)

We suppose F is given by a Straight-Line Program (SLP), a list of simple instructions performing oper-
ations +, − and × on inputs and previously computed values, which evaluates the polynomial at any 
point. We further suppose we are given bounds D > max j degz j

(F ) and T ≥ t . It is expected that the 
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bound T tells us that F is sparse, i.e., that T � Dn , the maximum number of terms. The goal of our 
interpolation algorithm is to obtain the t nonzero coefficients c� ∈ Fq and corresponding exponents 
e� = (e�1 , . . . , e�n ) ∈ Z

n of F . Our contribution is as follows.

Theorem 1. Let F ∈ Fq[z1, . . . , zn], and suppose we are given a division-free straight-line program SF of 
length L which evaluates F , an upper bound D ≥ max j degz j

(F ), and an upper bound T on the number of 
nonzero terms t of F . There exists a probabilistic algorithm which interpolates F with probability at least 3/4. 
The algorithm requires

Õ
(

Ln(T log D + n)(log D + log q) log D + nω−1T log D + nω log D
)

bit operations.1 ,2

This probability may be increased to 1 − ε using standard techniques, with cost increased by a 
factor O(log(ε−1)).

The rest of this introductory section puts our work in context and defines the notation and prob-
lem definitions for the rest of the paper. The reader who is already familiar with the area may wish 
to glance at our list of notation in Appendix A, then skip to Section 2, where we give a high-level 
overview of the algorithm referred to by Theorem 1 and work out a small illustrative example in full 
detail. The end of Section 2 provides an outline for the remainder of the paper.

1.1. Background and related work

Polynomial interpolation is a fundamental problem of computational mathematics that dates back 
centuries to the classic work of Newton, Waring, and Lagrange. In such settings, given a list of 
(n + 1)-dimensional points and some degree bounds, the coefficients of the unique n-variate poly-
nomial interpolating those points is produced.

If the number of nonzero coefficients is relatively small, the unknown function can be treated as 
an exponential sum, and the task becomes that of finding the exponents and coefficients of only the 
nonzero terms. This is the sparse interpolation problem, and it differs crucially from other interpolation 
problems not only in the representation of the output, but also that of the input. Every efficient 
sparse interpolation algorithm of which we are aware requires some control over where the unknown 
function is sampled, and typically takes as input some procedure or black box that can evaluate the 
unknown sparse polynomial at any chosen point.

The sparse interpolation problem has received considerable interest over fields of characteristic 
zero. The classical Prony’s method for exponential sums from 1795 (which can be regarded as the 
genesis of sparse interpolation) was later applied to sparse interpolation over the integers (Ben-Or and 
Tiwari, 1988; Kaltofen, 2010) and approximate complex numbers (Giesbrecht et al., 2009; Kaltofen et 
al., 2011). Compressive sensing is a different approach for approximate sparse interpolation which has 
the advantage of allowing the evaluation points to be chosen at random from a certain distribution 
(Candés et al., 2006; Donoho, 2006). Sparse Fourier and Hadamard–Walsh transforms allow for the 
interpolation of a sparse, complex-valued polynomial given by its discrete Fourier transform, and can 
find reasonable sparse approximations to non-sparse polynomials (Hassanieh et al., 2012; Kushilevitz 
and Mansour, 1993).

Straight-line programs are central to the study of algebraic complexity. One measure of the com-
plexity of a rational function is the least size of a straight-line program that computes it. In 2003, in 
the celebrated paper (Kabanets and Impagliazzo, 2004) by Kabanets of Impagliazzo, it is shown that 
a deterministic polynomial-time algorithm for the identity testing of F ∈ Z[x] given by a straight-line 

1 For two functions φ, ψ , we say φ ∈ Õ(ψ) if and only if φ ∈ O(ψ logc ψ) for some constant c ≥ 0.
2 The constant ω < 2.38 is the exponent of matrix multiplication, meaning that the product of two n × n matrices can be 

computed in O (nω) field operations.
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