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We present algorithms to compute the differential Galois group 
G associated via the parameterized Picard–Vessiot theory to a 
parameterized second-order linear differential equation

∂2

∂x2 Y + r1
∂
∂x Y + r0Y = 0,

where the coefficients r1 and r0 belong to the field of rational 
functions F (x) over a computable �-field F of characteristic 
zero, and the finite set of commuting derivations � is thought 
of as consisting of derivations with respect to parameters. This 
work relies on earlier procedures developed by Dreyfus and by 
the present author to compute G under the assumption that 
r1 = 0, which guarantees that G is unimodular. When r1 �= 0, we 
reinterpret a classical change-of-variables procedure in Galois-
theoretic terms in order to reduce the computation of G to the 
computation of an associated unimodular differential Galois group 
H . We establish a parameterized version of the Kolchin–Ostrowski 
theorem and apply it to give more direct proofs than those found 
in the literature of the fact that the required computations can 
be performed effectively. We then extract from these algorithms a 
complete set of criteria to decide whether any of the solutions 
to a parameterized second-order linear differential equation is 
�-transcendental over the underlying �-field of F (x). We give 
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various examples of computation and some applications to differential 
transcendence.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a linear differential equation

δn
x Y +

n−1∑
i=0

riδ
i
xY = 0 (1)

whose coefficients ri ∈ K = F (x) are rational functions in x with coefficients in a computable �-field F
of characteristic zero, δx denotes the derivation with respect to x, and � = {∂1, . . . , ∂m} is a finite set of 
pairwise commuting derivations, which we think of as derivations with respect to parameters. Letting 
� := {δx} ∪ �, we consider K as a �-field by setting ∂ j x = 0 and δx∂ j = ∂ jδx for each 1 ≤ j ≤ m.

The parameterized Picard–Vessiot (PPV) theory developed by Cassidy and Singer (2007) asso-
ciates a differential Galois group G (or PPV group) to (1), in analogy with the classical (or non-
parameterized) Picard–Vessiot (PV) theory hinted at by Picard and Vessiot towards the end of the 
nineteenth century, and put on a firm modern footing by Kolchin (1948) in the middle of the twen-
tieth. The theory of Cassidy and Singer (2007) is a special case of the generalization of Kolchin’s 
strongly normal differential Galois theory (Kolchin, 1953) to the parameterized setting developed by 
Landesman (2008), and it is also a special case of the differential Galois theory for systems of linear 
differential-difference equations developed by Hardouin and Singer (2008).

This PPV group G is defined as the group of differential field automorphisms over K of the 
PPV extension M generated over K by the solutions to (1), together with all their derivatives with 
respect to �. It is shown by Cassidy and Singer (2007) that G admits a structure of linear differ-
ential algebraic group (LDAG). These groups, whose study was pioneered by Cassidy (1972), are the 
differential-algebraic analogues of linear algebraic groups: they are defined as subgroups of GLn(F ) by 
a system of �-algebraic differential equations over F in the matrix entries. The PPV group G in this 
Galois theory encodes in its differential-algebraic structure the differential-algebraic relations among 
the solutions to (1).

In retrospect, the classical PV theory corresponds to the special case of the parameterized theory 
where the set of parameters � = ∅ is empty. The first general, effective algorithm leading towards the 
computation of the PV group of (1) for equations of order n = 2 is due to Kovacic (1986). Algorithms 
to compute the PV groups and Liouvillian solutions of second- and third-order linear differential equa-
tions are given in Singer and Ulmer, 1993a, 1993b, and an algorithm to compute the PV extension 
and PV group of a linear differential equation of arbitrary order n with reductive PV group is given in 
Compoint and Singer (1999). The first complete (though not effective) procedure to compute the PV 
group of (1) for arbitrary order n was developed by Hrushovski (2002).

Relying on the classification of the differential algebraic subgroups of SL2(F ) obtained by Sit
(1975), and on the algorithm of Kovacic (1986) to compute the Liouvillian solutions of (2) (when 
they exist), Dreyfus (2014b) developed algorithms to compute the PPV group H associated to

δ2
x Y − qY = 0, (2)

where q ∈ K , under the assumption that the field F = K δx is universal (Kolchin, 1973, §3.7), which is 
used by Dreyfus (2014b) in order to interpret F as a field of meromorphic functions on some region. 
We will instead make the weaker assumption that F is �-closed (Definition 1), which is required by 
the PPV theory of Cassidy and Singer (2007).

Although the assumption that F is �-closed is seldom satisfied in practice, it will play for us only 
an existential role: if the second-order linear differential equation whose PPV group we wish to com-
pute is defined over K0 := F0(x), and F0 is not �-closed (e.g., F0 = Q(t1, . . . , tm), � = { ∂

∂t1
, . . . , ∂

∂tm
}), 
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