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A quantifier elimination algorithm by cylindrical algebraic decom-
position based on regular chains is presented. The main idea is 
to refine a complex cylindrical tree until the signs of polynomi-
als appearing in the tree are sufficient to distinguish the true and 
false cells. We report an implementation of our algorithm in the 
RegularChains library in Maple and illustrate its effectiveness 
by examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Quantifier elimination over real closed fields (QE) has been applied successfully to many areas 
in mathematical sciences and engineering. The following textbooks and journal special issues Hong
(1993); Dolzmann et al. (2005); Caviness and Johnson (1998); Basu et al. (2006) demonstrate that QE 
is one of the major applications of symbolic computation.

It is well known that the worst-case running time for real quantifier elimination is doubly expo-
nential in the number of variables of the input formula, even if there is only one free variable and 
all polynomials in the quantified input are linear, see J.H. Davenport and C.W. Brown (Brown and 
Davenport, 2007). It is also well-known that QE based on Cylindrical Algebraic Decomposition (CAD) 
has a worst-case doubly exponential running time, even when the number of quantifier alternations 
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is constant, meanwhile other QE algorithms are only doubly exponential in the number of quantifier 
alternations, see J. Renegar (Renegar, 1992) and S. Basu (Basu, 1999).

Despite these theoretical results, the practical efficiency and the range of the applications of CAD-
based QE have kept improving regularly since G.E. Collins’ landmark paper (Collins, 1975). Today, 
CAD-based QE is available to scientists and engineers thanks to different software namely QEPCAD,1

Mathematica,2 REDLOG,3 SyNRAC,4 RegularChains.5

The work presented here contributes to this effort of making CAD-based QE practically efficient 
and widely available to the community. The corresponding algorithms were first proposed in our 
ISSAC 2014 paper (Chen and Moreno Maza, 2014c). The novelty is the use of the theory of regular 
chains in the context of QE while the implementation in Maple can be freely downloaded at the Reg-
ularChains library website. This work extends our previous results on CAD, which we summarize 
now.

In Chen et al. (2009), together with B. Xia and L. Yang, we presented a different way of computing 
CADs, based on triangular decomposition of polynomial systems and therefore on the theory of regular 
chains. Our scheme relies on the concept of cylindrical decomposition of the complex space (CCD), from 
which a CAD can be easily derived. Since regular chain theory is at the center of this new scheme, 
we call it RC-CAD. Meanwhile, we shall denote by PL-CAD Collins’ projection-lifting scheme for CAD 
construction.

In Chen and Moreno Maza (2014a), we substantially improved the practical efficiency of the RC-CAD 
scheme by means of an incremental algorithm for computing CADs; an implementation of this new 
algorithm, realized within the RegularChains library, outperforms PL-CAD-based solvers on many 
examples taken from the literature.

The purpose of the present paper is to show that RC-CAD, supported by this incremental algorithm, 
can serve the purpose of real QE. In addition, our implementation of RC-CAD-based QE is competitive 
with software implementing PL-CAD-based QE.

We turn our attention to the theoretical implication of performing QE by RC-CAD. If extended 
Tarski formulae are allowed, then deriving QE from a RC-CAD is a straightforward procedure, hence, 
we shall not discuss it here. In the rest of this paper, for both input and output of QE problems, only 
polynomial constraints (with rational number coefficients) will be allowed, thus excluding the use of 
algebraic expressions containing radicals.

In Collins’ original work, the augmented projection operator was introduced in order to find a 
sufficiently large set of polynomials such that their signs alone could distinguish true and false cells. 
In Hong (1992), H. Hong produced simple solution formula constructions, assuming that the available 
polynomials in a CAD were sufficient to generate output formulae.

In his PhD thesis (Brown, 1999), C.W. Brown then introduced ways to add polynomials in an 
incremental manner and proposed a complete algorithm for producing simple formulae.

It was desirable to adapt Brown’s ideas to the context of CADs based on regular chains. However, 
the many differences between the PL-CAD and RC-CAD schemes were making this adaptation challeng-
ing. In the PL-CAD scheme, the key data structure is a set P of projection factors, called the projection 
factor set, meanwhile, in the RC-CAD scheme, it is a tree T encoding the associated CCD (cylindrical 
decomposition of the complex space). Adding a polynomial f to P corresponds to refining T w.r.t. f
(as defined by Algorithm 6 in Chen and Moreno Maza, 2014a). The PL-CAD-property of a projection-
definable CAD was another key toward practical efficiency in the work of C.W. Brown (Brown, 1999). 
Its adaptation to the context of RC-CAD, implies that the signs of polynomials in the tree T suffice to 
solve the targeted QE problem.

After reviewing in Section 2 the basic notions related to RC-CAD (a complete account of which can 
be found in Chen and Moreno Maza, 2014a) we first adapt in Section 3, the concepts of projection 
factor set and projection definable, which were originally introduced by C.W. Brown (Brown, 1999). In 

1 QEPCAD: http :/ /www.usna .edu /CS /~qepcad /B /QEPCAD .html.
2 Mathematica: http :/ /www.wolfram .com /mathematica/.
3 REDLOG: http :/ /www.redlog .eu/.
4 SyNRAC: http :/ /jp .fujitsu .com /group /labs /techinfo /freeware /synrac/.
5 RegularChains: http :/ /www.regularchains .org/.
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