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In Kaltofen and Yang (2014) we give an algorithm based algebraic 
error-correcting decoding for multivariate sparse rational function 
interpolation from evaluations that can be numerically inaccurate 
and where several evaluations can have severe errors (“outliers”). 
Our 2014 algorithm can interpolate a sparse multivariate rational 
function from evaluations where the error rate 1/q is quite high, 
say q = 5.
For the algorithm with exact arithmetic and exact values at non-
erroneous points, one avoids quadratic oversampling by using ran-
dom evaluation points. Here we give the full probabilistic analysis 
for this fact, thus providing the missing proof to Theorem 2.1 
in Section 2 of our ISSAC 2014 paper. Our argumentation already 
applies to our original 2007 sparse rational function interpolation 
algorithm (Kaltofen et al., 2007), where we have experimentally 
observed that for T unknown non-zero coefficients in a sparse 
candidate ansatz one only needs T + O (1) evaluations rather than 
O (T 2) (cf. Candès and Tao sparse sensing), the latter of which we 
have proved in 2007. Here we prove that T + O (1) evaluations at 
random points indeed suffice.
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1. Our vector-of-functions recovery setting

We now present the setting of our theorem on the required number of samples for rational 
function recovery. For the full background including the references to the extant literature and our 
error-tolerant multivariate rational function interpolation algorithm, its implementation and observed 
experimental data we refer to our paper Kaltofen and Yang (2014).

We interpolate a vector of multivariate sparse rational functions with a common denominator:[
f 〈1〉

g
, . . . ,

f 〈s〉

g

]
∈ K(x1, . . . , xn)

s, g �= 0. (1)

Note that the fractions f 〈σ 〉/g are not necessarily reduced, and they may even have GCD(g,

GCDσ ( f 〈σ 〉)) �= 1, because reduction by GCD can affect the sparsity of the fraction, such as (xd
1 − xd

2)/

(x1 − x2). We assume that we have for all σ , 1 ≤ σ ≤ s, sets of terms D〈σ 〉
f ⊇ supp( f 〈σ 〉) that consti-

tute maximal sparse supports, and a maximal sparse support set D g ⊇ supp(g) for the terms in the 
common denominator g . See Appendix A for a definition of the support and the meaning of all used 
symbols. Our algorithms (Kaltofen et al., 2007; Kaltofen and Yang, 2013, 2014) follow the variable-
by-variable process by Zippel (1979), which yield those sparse support supersets in each iteration. 
We suppose that we can evaluate the vector (1) (“probe the black box”) at values for the variables, 
(x1, . . . , xn) ← (ξ1,�, . . . , ξn,�) ∈ Kn , for all L evaluations 0 ≤ � ≤ L − 1, where the ξμ,� are chosen in a 
certain way, e.g., selected randomly and uniformly from a finite subset S ⊆ K. As in Kaltofen and Yang
(2013), the obtained vector [ β〈1〉

� , . . . , β〈s〉
� ] ∈ (K ∪ {∞})s can be incorrect in one or more components 

for k ≤ E evaluations � = λ1, . . . , λk , that is

∀κ,1 ≤ κ ≤ k : ∃σ ,1 ≤ σ ≤ s : f 〈σ 〉

g
(ξ1,λκ , . . . ξn,λκ ) �= β

〈σ 〉
λκ

, (2)

∀� /∈ {λ1, . . . , λk} : ∀σ ,1 ≤ σ ≤ s : f 〈σ 〉

g
(ξ1,�, . . . ξn,�) = β

〈σ 〉
� . (3)

Here E is predetermined, for instance from the error rate (Kaltofen and Yang, 2014, Remark 1.1), and 
the locations of the errors are unknown. As in Kaltofen and Yang (2013) we set all components of 
a vector = ∞ if g(ξ1,�, . . . , ξn,�) = 0, that even for those components with f 〈σ 〉(ξ1,�, . . . , ξn,�) = 0. 
False vectors full of ∞’s can appear at error locations when g(ξ1,λκ , . . . , ξn,λκ ) �= 0. We can iden-
tify vectors that contain both ∞ and a field element as erroneous. Errors are dealt with by in-
terpolating ( f 〈σ 〉�)/(g�) à la Kaltofen and Pernet (2013), Kaltofen and Yang (2013) where � =
(xn1 − ξn1,λ1 ) · · · (xn1 − ξn1,λk ) is an error locator polynomial for a chosen n1 with 1 ≤ n1 ≤ n. We 
have the maximal supports

D〈σ 〉
f ,E;n1

= {τ xν
n1

| τ ∈ D〈σ 〉
f ,0 ≤ ν ≤ E} ⊇ supp( f 〈σ 〉�),

D g,E;n1 = {τ xν
n1

| τ ∈ D g,0 ≤ ν ≤ E} ⊇ supp(g�).

}
(4)

Now we limit the sparse supports of polynomials with unknown coefficients �〈σ 〉 and � to the term 
sets (4). From (2) and (3) we obtain linear homogeneous equations for the coefficients of �〈σ 〉 , �:

�〈σ 〉(ξ1,�, . . . , ξn,�) − β
〈σ 〉
� �(ξ1,�, . . . , ξn,�) = 0,

for 0 ≤ � ≤ L − 1,1 ≤ σ ≤ s with β
〈σ 〉
� �= ∞,

�(ξ1,�, . . . , ξn,�) = 0,

for 0 ≤ � ≤ L − 1 with β
〈1〉
� = · · · = β

〈s〉
� = ∞,

with supp(�〈σ 〉) ⊆ D〈σ 〉
f ,E;n1

for 1 ≤ σ ≤ s, supp(�) ⊆ D g,E;n1 .

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5)

Note that �〈σ 〉 ← f 〈σ 〉�, � ← g� solve (5). We call any solution (�〈1〉, . . . , �〈s〉, �) of (5) an inter-
polant. We seek a (minimal) L and ξμ,� such that all solutions of (5) satisfy

∀σ ,1 ≤ σ ≤ s : �〈σ 〉g = f 〈σ 〉�, with supp(�〈σ 〉) ⊆ D〈σ 〉
f ,E;n1

, supp(�) ⊆ D g,E;n1 . (6)
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