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A univariate polynomial f over a field is decomposable if f =
g ◦ h = g(h) with nonlinear polynomials g and h. It is intuitively 
clear that the decomposable polynomials form a small minority 
among all polynomials over a finite field Fq . The tame case, where 
the characteristic of Fq does not divide n = deg f , is fairly well 
understood, and we have reasonable bounds on the number of 
decomposables of degree n. However, it is not known how to 
determine this number exactly if n has more than two prime 
factors. There is an obvious inclusion–exclusion formula, but to 
evaluate its summands, one has to determine, under a suitable 
normalization, the number of collisions, where essentially different 
components (g, h) yield the same f . Ritt’s Second Theorem 
classifies all tame collisions of two such pairs.
We present a normal form for tame collisions of any number 
of decompositions with any number of components and describe 
exactly the (non)uniqueness of the parameters. This yields the 
exact number of such collisions over a finite field. We conclude 
with a fast algorithm for the exact number of decomposable 
polynomials at degree n over a finite field Fq of characteristic 
coprime to n.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The composition of two univariate polynomials g, h ∈ F [x] over a field F is f = g ◦ h = g(h). Then 
(g, h) is a decomposition of f and f is decomposable if g and h have degree at least 2. In the 1920s, 
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Ritt (1922, 1923), Fatou (1921), and Julia (1922) studied structural properties of these decompositions 
over C, using analytic methods. Particularly important are two theorems by Ritt on the uniqueness, 
in a suitable sense, of decompositions, the first one for (many) indecomposable components and the 
second one for two components, as above. Engstrom (1941) and Levi (1942) proved Ritt’s theorems 
over arbitrary fields of characteristic zero using algebraic methods.

The theory was extended to arbitrary characteristic by Fried and MacRae (1969), Dorey and Whap-
les (1974), Schinzel (1982, 2000), Zannier (1993), and others. We now have applications in cryp-
tography, see Cade (1985, 1987) and Boucher et al. (2010), and signal processing, see Demirtas et 
al. (2013). In computer algebra, the decomposition method of Barton and Zippel (1985) requires ex-
ponential time, see Giesbrecht and May (2007) for a detailed analysis. A fundamental dichotomy is 
between the tame case, where the characteristic p of F does not divide deg g , and the wild case, where 
p divides deg g , see von zur Gathen (1990a, 1990b). (Schinzel (2000, § 1.5) uses tame in a different 
sense.) A breakthrough result of Kozen and Landau (1989) was their polynomial-time algorithm to 
compute tame decompositions; see also von zur Gathen et al. (1987), Kozen et al. (1996), Gutierrez 
and Sevilla (2006b), and the survey articles of von zur Gathen (2002) and Gutierrez and Kozen (2003)
with further references.

In the wild case, considerably less is known, both mathematically and computationally. Zippel
(1991) suggests that the block decompositions of Landau and Miller (1985) for determining subfields 
of algebraic number fields can be applied to decomposing rational functions even in the wild case. 
A version of Zippel’s algorithm by Blankertz (2014) computes in polynomial time all decompositions 
of a polynomial that are minimal in a certain sense.

Zannier (2007, 2008, 2009) studies a different but related question, namely decompositions f =
g ◦ h in C[x] of sparse (or lacunary) polynomials f , where the number t of terms is fixed, while the 
corresponding degrees and coefficients may vary. He shows that the sparsity of f implies the sparsity 
of h, proving a conjecture by Schinzel, and also gives a parametrization of all such f , g , h in terms of 
varieties (for the coefficients) and lattices (for the exponents). Fuchs and Pethő (2011) and Fuchs and 
Zannier (2012) follow up with complete descriptions of sparse decomposable rational functions.

It is intuitively clear that the univariate decomposable polynomials form only a small minority 
among all univariate polynomials over a field. There is an obvious inclusion–exclusion formula for 
counting them. The main issue is then to determine, under a suitable normalization, the number of 
collisions, where essentially different components (g, h) yield the same f . The number of decompos-
able polynomials of degree n is thus the number of all pairs (g, h) with deg g · deg h = n reduced by 
the ambiguities introduced by collisions. An important tool for estimating the number of collisions is 
Ritt’s Second Theorem. The first algebraic versions of Ritt’s Second Theorem in positive characteristic 
p required p > deg(g ◦ h). Zannier (1993) reduced this to the milder and more natural requirement 
g′ �= 0 for all left components g in the collision. His proof works over algebraically closed fields, and 
Schinzel’s (2000) monograph adapts it to finite fields.

The task of counting compositions over a finite field of characteristic p was first considered by 
Giesbrecht (1988). He showed that the decomposable polynomials form an exponentially small frac-
tion of all univariate polynomials. Von zur Gathen (2014a) presents general approximations to the 
number of decomposable polynomials. These come with satisfactory (rapidly decreasing) relative er-
ror bounds except when p divides n = deg f exactly twice.

Ritt’s First Theorem relates complete decompositions of a given polynomial, where all components 
are indecomposable. Zieve and Müller (2008) turn this into an applicable method and Medvedev and 
Scanlon (2014) combine this approach with results from model theory to describe the subvarieties of 
the k-dimensional affine space that are preserved by a coordinatewise polynomial map. Both works 
lead to slightly different canonical forms for the complete decomposition of a given polynomial. Zieve 
and Müller (2008) study the replacement of adjacent indecomposable g, h in a complete decompo-
sition by g∗, h∗ with the same composition, but deg g = deg h∗ �= deg h = deg g∗ . Motivated by the 
analogy with the Reidemeister moves of knot theory, this is called a Ritt move. The ensuing collision 
is the theme of Ritt’s Second Theorem and von zur Gathen (2014b) presents a normal form with an 
explicit description of the (non)uniqueness of the parameters under Zannier’s assumption g′(g∗)′ �= 0.

This work combines the above “normalizations” of Ritt’s theorems to classify collisions of two or 
more decompositions, not necessarily complete and of arbitrary length. We proceed as follows. In 
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