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a b s t r a c t

Given a real valued function f (X, Y ), a box region B0 ⊆ R2 and
ε > 0, wewant to compute an ε-isotopic polygonal approximation
to the restriction of the curve S = f −1(0) = {p ∈ R2

: f (p) = 0} to
B0. We focus on subdivision algorithms because of their adaptive
complexity and ease of implementation. Plantinga & Vegter gave
a numerical subdivision algorithm that is exact when the curve S
is bounded and non-singular. They used a computational model
that relied only on function evaluation and interval arithmetic.
We generalize their algorithm to any bounded (but possibly non-
simply connected) region that does not contain singularities of S.
With this generalization as a subroutine, we provide a method to
detect isolated algebraic singularities and their branching degree.
This appears to be the first complete purely numerical method to
compute isotopic approximations of algebraic curves with isolated
singularities.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Given ε > 0, a box region B0 ⊆ R2 and a real valued function f : R2
→ R, we want to compute a

polygonal approximation P to the restriction of the implicit curve S = f −1(0) to B0 (where f −1(0) =
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{p ∈ R2
: f (p) = 0}). The approximation P must be (1) ‘‘topologically correct’’ and (2) ‘‘ε-close’’ to

S∩B0. We use the standard interpretation of requirement (2), that d(P, S∩B0) ≤ ε where d(·, ·) is the
Hausdorff distance between compact sets. In recent years, it has become accepted (Boissonnat et al.,
2006) to interpret requirement (1) tomean that P is isotopic to S∩B0, whichwe denote by P ≈ S∩B0.
This means that we not only require that P and S ∩ B0 are homeomorphic, but also require that they
are embedded in R2 ‘‘in the same way’’. This means that the two embeddings can be continuously
deformed to each other, e.g., if S∩B0 consists of two disjoint ovals, these can be embedded inR2 as two
ovals exterior to each other, or as two nested ovals. Isotopy, but not homeomorphism, requires P to
respect this distinction. There is a stronger notion of isotopy called ambient isotopy (see the definition
in Section 4). We use this stronger notion in this paper (but, for simplicity, we still say ‘‘isotopy’’). See
Boissonnat et al. (2006, p. 183) for a discussion of the connections between ambient and plain isotopy.
In this paper, we focusmainly on topological correctness since achieving ε-closeness is not an issue for
our particular subdivision approach (cf. Boissonnat et al. (2006, pp. 213–4)). This amounts to setting
ε = ∞.

We may call the preceding problem the 2-D implicit meshing problem. The term ‘‘meshing’’
comes from the corresponding problem in 3-D: given ε > 0 and an implicit surface S : f (X, Y , Z) = 0,
wewant to construct a triangular meshM such that d(M, S) ≤ ε andM ≈ S. It is interesting (see Burr
et al. (in preparation)) to identify the 1-Dmeshing with the well-known problem of real root isolation
and refinement for a real function f (X).

The algebraic approach and the numerical approach constitute two extremes of a spectrum
among the approaches to most computational problems on curves and surfaces. Algebraic methods
can clearly solve most problems in this area, e.g., by an application of the general theory of cylindrical
algebraic decomposition (CAD) (Basu et al., 2003). Purely algebraic methods, however, are generally
not considered practical, even in the plane (e.g., Hong (1996) and Seidel and Wolpert (2005)),
but efficient solutions have been achieved for special cases such as intersecting quadrics in 3-D
(Schoemer andWolpert, 2006). At the other endof the spectrum, the numerical approaches emphasize
approximation and iteration. An important class of such algorithms is the class of subdivision
algorithms which can be viewed as a generalization of binary search. Such algorithms are practical
in two senses: they are easy to implement and their complexity is more adaptive with respect to the
input instance (Yap, 2006). Another key feature of subdivision algorithms is that they are ‘‘localized’’,
meaning that we can restrict our computation to some region of interest.

Besides the algebraic and numerical approaches, there is another approach thatmight be called the
geometric approach inwhichwepostulate an abstract computationalmodelwith certain (geometric)
primitives (e.g., shoot a ray or decide if a point is in a cell). When implementing these geometric
algorithms, one must still choose an algebraic or numerical implementation of these primitives.
Implementations can also use a hybrid of algebraic and numerical techniques.

Unfortunately, numerical methods seldom have global correctness guarantees. The most famous
example is the Marching Cube algorithm (Lorensen and Cline, 1987). Many authors have tried to
improve the correctness of subdivision algorithms (e.g., Stander and Hart (1997)). So far, such efforts
have succeeded under one of the following situations:

• (A0) Requiring niceness assumptions such as being non-singular or Morse.
• (A1) Invoking algebraic techniques such as resultant computations or manipulations of algebraic

numbers.

It is clear that (A0) should be avoided. Generally, we call a method ‘‘complete’’ if the method is
correct without any (A0) type restrictions. But many incomplete algorithms (e.g., Marching cube)
are quite useful in practice. We want to avoid (A1) conditions because algebraic manipulations are
harder to implement and such techniques are relatively expensive and non-adaptive (Yap, 2006).
The complete removal of (A0) type restrictions is the major open problem faced by purely numerical
approaches to meshing. Thus, Boissonnat et al. (2006, p. 187) state that ‘‘meshing in the vicinity of
singularities is a difficult open problem and an active area of research’’. Most of the techniques described
in their survey are unable to handle singularities. It should be evident that this open problem has an
implicit requirement to avoid the use of (A1) techniques.
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