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a b s t r a c t

Let f be a univariate polynomial with real coefficients, f ∈ R[X].
Subdivision algorithms based on algebraic techniques (e.g., Sturm
or Descartesmethods) arewidely used for isolating the real roots of
f in a given interval. In this paper, we consider a simple subdivision
algorithm whose primitives are purely numerical (e.g., function
evaluation). The complexity of this algorithm is adaptive because
the algorithmmakes decisions based on local data. The complexity
analysis of adaptive algorithms (and this algorithm in particular) is
a new challenge for computer science. In this paper, we compute
the size of the subdivision tree for the SqFreeEVAL algorithm.

The SqFreeEVAL algorithm is an evaluation-based numerical
algorithm which is well-known in several communities. The algo-
rithm itself is simple, but prior attempts to compute its complexity
have proven to be quite technical and have yielded sub-optimal re-
sults. Ourmain result is a simpleO(d(L+ ln d)) bound on the size of
the subdivision tree for the SqFreeEVAL algorithm on the bench-
mark problemof isolating all real roots of an integer polynomial f of
degree d and whose coefficients can be written with at most L bits.

Our proof uses two amortization-based techniques: first,
we use the algebraic amortization technique of the standard
Mahler–Davenport root bounds to interpret the integral in terms
of d and L. Second, we use a continuous amortization technique
based on an integral to bound the size of the subdivision tree. This
paper is the first to use the novel analysis technique of continuous
amortization to derive state of the art complexity bounds.
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1. Introduction

In this paper, we show that the size of the subdivision tree for the simple, evaluation-based,
numerical algorithm SqFreeEVAL has size O(d(L + ln d)) for the benchmark problem of isolating all
of the real roots of an integer polynomial of degree dwhose coefficients can be represented by atmost
L bits. Under themild assumption that L ≥ ln d, this complexity simplifies to the optimal size ofO(dL),
see Eigenwillig et al. (2006, Section 3.3) for a proof of optimality. The optimality and simplicity of the
SqFreeEVAL algorithm imply that it may be a useful algorithm in practical settings. The bound on
the size of the subdivision tree is achieved via a straight-forward and elementary argument. The two
main techniqueswhich are used in the computation are algebraic amortization, in the formofMahler–
Davenport bounds, and continuous amortization, in the form of an integral technique as presented in
Burr et al. (2009).

1.1. EVAL-type algorithms

The SqFreeEVAL algorithm which we study in this paper is a specific example of what we
call an EVAL-type algorithm. These algorithms are so named because they are based on function
evaluation: EVAL-type algorithms take, as input, functions which allow some subset of the following
twopredicates: first, these functions and their derivatives canbe evaluated at a countable dense subset
of their domain. In this paper, the domain will be the real numbers and the countable dense subset
will be the dyadic integers. Second, these functions and their derivatives can be approximated on
intervals in such a way that the approximation converges as the input intervals converge to a point. In
this paper, the approximation is derived from interval arithmetic on a Taylor sequence. The simplest
and most well-known example of an EVAL-type algorithm is Lorensen and Cline’s marching cube
algorithm (Lorensen and Cline, 1987).

EVAL-type algorithms are typically studied because of their simplicity and generality. These
algorithms are fairly general because their inputs can be extended to more general analytic functions.
In particular, many analytic functions have interval arithmetic available to them, and, therefore,
it is possible to approximate these functions on intervals. In addition, with the limited predicates
available to EVAL-type algorithms, most of the techniques which are used in these algorithms
are analytically based (as opposed to algebraically based). These algorithms are simple because,
in many cases, EVAL-type algorithms are based on simple recursive bisection algorithms. Such
algorithms iteratively subdivide an initial domain until each set in the resulting partition of the initial
domain satisfies a (usually simple) terminal condition. Bisection algorithms are common in computer
graphics (Boier-Martin et al., 2005) as well as in computational science and engineering applications
(Domain Decomposition Methods, 2011). Bisection algorithms are of particular interest because they
are adaptive; they perform more bisections near difficult features and fewer bisections elsewhere.
However, this adaptivity makes the complexity analysis of such algorithmsmore difficult because the
subdivision tree may have a few deep paths while the remainder of the tree remains modest in size.

EVAL-type algorithms have been studied in the univariate case in Henrici (1970), Yakoubsohn
(2005), Yap and Sagraloff (2011), Burr et al. (in preparation) and Burr et al. (2009), in the bivariate and
trivariate cases in Lorensen and Cline (1987), Snyder (1992), Plantinga and Vegter (2004), Plantinga
(2006), Lin and Yap (2009) and Burr et al. (2012), and in the multivariate case in Galehouse (2009)
and Dedieu and Yakoubsohn (1992). All of these algorithms are devoted to approximating algebraic
(and in some cases analytic varieties) in the real or complex settings. The algorithms in Burr et al.
(in preparation) and Burr et al. (2009) are designed to find all real roots of a polynomial or analytic
function while the algorithms in Henrici (1970), Yakoubsohn (2005) and Yap and Sagraloff (2011) are
designed to find the complex roots of a polynomial or analytic function (note that Henrici (1970) is
only designed to find a single root of a polynomial). Each of these algorithms is very closely related to
the SqFreeEVAL algorithm considered in this paper; the main differences are in the setting, in the
type of subdivisions performed, and in various preprocessing steps. We give a more detailed account
of these algorithms in the next section. The two-dimensional EVAL-type algorithm (Plantinga and
Vegter, 2004; Plantinga, 2006)was presented for approximating smooth and bounded varieties. It was
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