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a b s t r a c t

For a semialgebraic set K in Rn, let Pd(K) = {f ∈ R[x]≤d : f (u) ≥ 0
∀ u ∈ K} be the cone of polynomials in x ∈ Rn of degrees at
most d that are nonnegative on K . This paper studies the geometry
of its boundary ∂Pd(K). We show that when K = Rn and d
is even, its boundary ∂Pd(K) lies on the irreducible hypersurface
defined by the discriminant ∆(f ) of f . We show that when K =

{x ∈ Rn
: g1(x) = · · · = gm(x) = 0} is a real algebraic

variety, ∂Pd(K) lies on thehypersurface definedby thediscriminant
∆(f , g1, . . . , gm) of f , g1, . . . , gm.We show thatwhenK is a general
semialgebraic set, ∂Pd(K) lies on a union of hypersurfaces defined
by the discriminantal equations. Explicit formulae for the degrees
of these hypersurfaces and discriminants are given. We also prove
that typically Pd(K) does not have a barrier of type− logϕ(f )when
ϕ(f ) is required to be a polynomial, but such a barrier exists if
ϕ(f ) is allowed to be semialgebraic. Some illustrating examples are
shown.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let K be a semialgebraic set in Rn, and Pd(K) be the cone of multivariate polynomials in x ∈ Rn

that are nonnegative on K and have degrees at most d, that is,

Pd(K) =

f ∈ R[x]≤d : f (u) ≥ 0∀ u ∈ K


.

Very natural questions arise: What is the boundary of Pd(K)? What kind of equation does it satisfy?
Can we find a nice barrier function for Pd(K)? This paper discusses these issues.

A polynomial f (x) in x ∈ Rn is said to be nonnegative or positive semidefinite (psd) on K if
the evaluation f (u) ≥ 0 for every u ∈ K . When K = Rn and d is even, an f (x) ∈ Pd(Rn) is
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called a nonnegative polynomial or psd polynomial. When K = Rn
+

is the nonnegative orthant,
an f (x) ∈ Pd(Rn

+
) is called a co-positive polynomial. Typically, it is quite difficult to check the

membership of the cone Pd(K). In the case of K = Rn, for any even d > 2, it is NP-hard to check
the membership of Pd(Rn) (e.g., it is NP-hard to check nonnegativity of quartic forms Nesterov (2000)
or bi-quadratic forms Ling et al. (2009)). In practical applications, people usually do not check the
membership of Pd(K) directly, and instead check sufficient conditions like sum of square (SOS) type
representations (a polynomial is SOS if it is a finite summation of squares of other polynomials). There
is much work on applying SOS type certificates to approximate the cone Pd(K). We refer the reader to
Lasserre (2001); Nie et al. (2006); Parrilo (2003); Parrilo and Sturmfels (2003); Putinar (1993); Reznick
(2000); Schmüdgen (1991). However, there is relatively little work on studying the cone Pd(K) and its
boundary ∂Pd(K) directly. The geometric properties of ∂Pd(K) are very little known.

When K = Rn and d = 2, P2(Rn) reduces to the cone of positive semidefinite matrices, because a
quadratic polynomial f (x) is nonnegative everywhere if and only if its associated symmetric matrix
A ≽ 0 (positive semidefinite). The boundary of P2(Rn) consists of f whose corresponding A is positive
semidefinite and singular, which lies on the irreducible determinantal hypersurface det(A) = 0. Its
degree is equal to the length of matrix A. A typical barrier function for P2(Rn) is − log det(A). Note
that det(A) is a polynomial in the coefficients of f (x). Do we have a similar result for Pd(K) when
K ≠ Rn or d > 2? Clearly, when K = Rn and d > 2, we need to generalize the definition of
determinants for quadratic polynomials to higher degree polynomials. There has been classical work
in this area like Gel’fand et al. (1994). The ‘‘determinants’’ for polynomials of degree 3 or higher are
called discriminants. The discriminant ∆(f ) of a single homogeneous polynomial (also called form)
f (x) is defined such that ∆(f ) = 0 if and only if f (x) has a nonzero complex critical point. For a
general semialgebraic set K , to study ∂Pd(K), we need to define the discriminant ∆(f0, . . . , fm) of
several polynomials f0, . . . , fm. As we will see in this paper, the discriminant plays a fundamental role
in studying Pd(K).

Recently, interests have arisen in the new area of convex algebraic geometry. The geometry
of convex (also including nonconvex) optimization problems would be studied by using algebraic
methods. There is much work in this field, in areas like maximum likelihood estimation Catanese
et al. (2006), k-ellipses Nie et al. (2008), semidefinite programming Nie et al. (2010); Ranestad and
Graf von Bothmer (2009), matrix cubes Nie and Sturmfels (2009), polynomial optimization Nie and
Ranestad (2009), statistical models and matrix completion Sturmfels and Uhler (2010), convex hulls
Ranestad and Sturmfels (in press); Sanyal et al. (2011). In this paper, we study the geometry of the
cone Pd(K) by using algebraic methods, and find its new properties.
Contributions The cone Pd(K) is a semialgebraic set, and its boundary ∂Pd(K) is a hypersurface
defined by a polynomial equation. To study this hypersurface, we need to define the discriminant
∆(f0, . . . , fm), for several forms f0, . . . , fm, which satisfies ∆(f0, . . . , fm) = 0 if and only if f0(x) =

· · · = fm(x) = 0 has a nonzero singular solution. This will be shown in Section 3. We prove that when
K = Rn and d > 2 is even, ∂Pd(Rn) lies on the irreducible discriminantal hypersurface ∆(f ) = 0,
which will be shown in Section 4. We show that when K = {x ∈ Rn

: g1(x) = · · · = gm(x) = 0}
is a real algebraic variety, ∂Pd(K) lies on the discriminantal hypersurface ∆(f , g1, . . . , gm) = 0 in f ,
which will be shown in Section 5. We show that when K is a general semialgebraic set, ∂Pd(K) lies on
a union of several discriminantal hypersurfaces, which will be shown in Section 6. Explicit formulae
for the degrees of these hypersurfaces will also be shown. Generally, we show that Pd(K) does not
have a barrier of type − logϕ(f ) when ϕ(f ) is required to be a polynomial, but such a barrier exists
if ϕ(f ) is allowed to be semialgebraic. For the convenience of readers, we include some preliminaries
about elementary algebraic geometry, discriminants and resultants. This will be shown in Section 2.

2. Some preliminaries

2.1. Notation

The symbol N (resp., R) denotes the set of nonnegative integers (resp., real numbers), and Rn
+

denotes the nonnegative orthant of Rn. For integer n > 0, [n] denotes the set {1, . . . , n}. For x ∈ Rn,
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