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We present a solution for the classical univariate rational interpo-
lation problem by means of (univariate) subresultants. In the case 
of Cauchy interpolation (interpolation without multiplicities), we 
give explicit formulas for the solution in terms of symmetric func-
tions of the input data, generalizing the well-known formulas for 
Lagrange interpolation. In the case of the osculatory rational inter-
polation (interpolation with multiplicities), we give determinantal 
expressions in terms of the input data, making explicit some ma-
trix formulations that can independently be derived from previous 
results by Beckermann and Labahn.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Cauchy interpolation problem or rational interpolation problem, considered already in Cauchy
(1841), Rosenhain (1845), Predonzan (1953), is the following:

Let K be a field, a, b ∈ Z≥0, and set � = a + b. Given a set {x0, . . . , x�} of � + 1 distinct points in K , 
and y0, . . . , y� ∈ K , determine—if possible—polynomials A, B ∈ K [x] such that deg(A) ≤ a, deg(B) ≤ b
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and

A

B
(xi) = yi, 0 ≤ i ≤ �. (1)

This might be considered as a generalization of the classical Lagrange interpolation problem for 
polynomials, where b = 0 and a = �. In contrast with that case, there is not always a solution to this 
problem, since for instance by setting y0 = · · · = ya = 0, the numerator A is forced to be identically 
zero, and therefore the remaining ya+k , 1 ≤ k ≤ � − a, have to be zero as well. However, when there 
is a solution, then the rational function A/B is unique as shown below.

The obvious generalization of the Cauchy interpolation problem receives the name osculatory ratio-
nal interpolation problem or rational Hermite interpolation problem:

Let K be a field, a, b ∈ Z≥0, and set � = a + b. Given a set {x0, . . . , xk} of k + 1 distinct points 
in K , a0, . . . , ak ∈ Z≥0 such that a0 + · · · + ak = � + 1, and yi, j ∈ K , 0 ≤ i ≤ k, 0 ≤ j < ai , determine—if 
possible—polynomials A, B ∈ K [x] such that deg(A) ≤ a, deg(B) ≤ b and

(
A

B

)( j)

(xi) = j!yi, j, 0 ≤ i ≤ k, 0 ≤ j < ai . (2)

This problem has also been extensively studied from both an algorithmic and theoretical point of 
view, see for instance Salzer (1962), Kahng (1969), Wuytack (1975), Beckermann and Labahn (2000), 
Tan and Fang (2000) and the references therein. A unified framework, which relates the rational inter-
polation problem with the Euclidean algorithm, is presented in Antoulas (1988), and also in the book 
von zur Gathen and Gerhard (2003, Section 5.7), where it is called rational function reconstruction. In 
Theorem 2.2 below, we translate these results to the subresultants context, which enables us to obtain 
some explicit expressions in terms of the input data for both problems.

For the Cauchy interpolation problem, there exists an explicit closed formula in terms of the input 
data that can be derived from the results on symmetric operators in a suitable ring of polynomials 
presented in Lascoux (2003), as shown in Lascoux (2013). Theorem 3.1 recovers this expression from 
the relationship between subresultants and the Sylvester sums introduced in Sylvester (1853), see also 
Lascoux and Pragacz (2003), D’Andrea et al. (2007, 2009), Roy and Szpirglas (2011), Krick and Szanto
(2012).

We also present in Theorem 4.2 an explicit determinantal expression for the solution of the oscula-
tory rational interpolation problem in terms of the input data, giving it as a quotient of determinants 
of generalized Vandermonde-type (and Wronskian-type) matrices. This generalizes straight-forwardly 
the corresponding known determinantal expression for the classical Hermite interpolation problem, 
setting another unified framework for all these interpolation problems. As mentioned in Remark 4.4
below, this determinantal expression can actually also be derived following the work of Beckermann 
and Labahn (2000), as we concluded from a recent useful discussion with George Labahn.

Since no closed formula for subresultants in terms of roots with multiplicities is known yet—except 
for very few exceptions, see D’Andrea et al. (2013)—a generalization of Theorem 3.1 to the osculatory 
rational interpolation problem is still missing, and some more work on the subject must be done in 
order to shed light to the problem.

2. Subresultants and the rational interpolation problem

Let us start by showing that a solution A/B for the rational interpolation problem, when it exists, 
is unique.

Proposition 2.1. If the osculatory rational interpolation problem (2) has a solution, then there exists a unique 
pair (A, B) with gcd(A, B) = 1 and A monic such that A/B is a solution.

Proof. If there is a solution, then, cleaning common factors and dividing by the leading coefficient 
of A, there is a solution satisfying the same degree bounds with gcd(A, B) = 1 and A monic. Assume
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