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Quantifier elimination is a foundational issue in the field of 
algebraic and logic computation. In first-order logic, every formula 
is well composed of atomic formulas by negation, conjunction, 
disjunction, and introducing quantifiers. It is often made quite 
complicated by the occurrences of quantifiers and nonlinear 
functions in atomic formulas. In this paper, we study a class of 
quantified exponential polynomial formulas extending polynomial 
ones, which allows the exponential to appear in the first variable. 
We then design a quantifier elimination procedure for these 
formulas. It adopts the scheme of cylindrical decomposition that 
consists of four phases—projection, isolation, lifting, and solution 
formula construction. For the non-algebraic representation, the 
triangular systems are introduced to define transcendental coordi-
nates of sample points. Based on that, our cylindrical decomposi-
tion produces projections for input variables only. Hence the 
procedure is direct and effective.
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1. Introduction

Quantifier elimination is a foundational issue in the field of algebraic and logic computation with 
extremely wide applications, such as computer-aided geometric design, program verification and 
testing, control synthesis of dynamic and hybrid systems, to name just a few. As is well known, 
in first-order logic, every formula is well composed of atomic formulas by a finite times of nega-
tion, conjunction, disjunction, and introducing quantifiers. It is often made quite complicated by the 
occurrences of quantifiers and nonlinear functions (particularly transcendental functions) in atomic 
formulas. Once all quantified variables are eliminated, the resulting formula would be simply under-
stood for both human and machine. Such elimination, however, is not easy in general due to the 
complex structures of varieties of nonlinear functions. Hence quantifier elimination on nonlinear 
formulas is a significant and challenging job.

In 1930s, Tarski invented a quantifier elimination method for the elementary theory of real closed 
fields T(R; <, =; +, · ; 0, 1) (Tarski, 1951). Seidenberg (1954) and Cohen (1969) offered two alter-
native methods. However, these methods required too much computation to be practical except for 
quite trivial instances. In 1973, Collins presented the first practical quantifier elimination method—
cylindrical algebraic decomposition (CAD) for T(R; <, =; +, · ; 0, 1) (Collins, 1975). It splits the whole 
space into a finite number of connected regions, on each of which the input formula is truth-invariant, 
and yields the complete solution formula by collecting the defining formulas of feasible regions. (The 
details will be recalled in Subsection 2.2.) Its complexity is double-exponential w.r.t. the number of 
input variables. So Collins and his descendants were devoted to improving the efficiency of CADs. 
An important breakthrough was the partial CAD (Collins and Hong, 1991) that utilized three parts of 
information in the input formula (the quantifiers, the Boolean structure, and the absence of some vari-
ables in some atomic formulas) to partially build the decomposition. Besides, an approximate quan-
tifier elimination method was studied in Hong and Safey El Din (2009, 2012). It required the input 
formula to satisfy a certain extra condition, and allowed the solution formula to be almost equivalent 
to the input formula. Thus it could successfully tackle some challenging problems, such as stability 
analysis of the renowned MacCormack’s scheme. For the other school, Weispfenning (1988) presented 
another practical quantifier elimination method for linear polynomial formulas by virtual substitution 
of linear expressions, and pointed out that the complexity of such linear problems has a double-
exponential lower bound w.r.t. the number of input variables too. Thus the theoretical complexity 
of the quantifier elimination problem for T(R; <, =; +, · ; 0, 1) was established. Later Weispfenning
(1997) developed this method for the quadratic case by virtual substitution of square-root expressions 
and the general case by Thom’s lemma (Coste and Roy, 1988). The above mature methods were im-
plemented in the computer algebra tools QEPCAD (Brown, 2003) and Redlog (Dolzmann and Sturm, 
1997), respectively.

Besides, Tarski also concerned whether the decidability result could be extended to the theory 
T(R; <, =; +, · , exp; 0, 1), i.e. introducing the exponential function. Unfortunately, the extended the-
ory was proven to admit no quantifier elimination (van den Dries, 1982), and was shown to be 
decidable when Schanuel’s conjecture holds (Wilkie, 1996). The known positive results thereby fo-
cused on some sub-theories of T(R; <, =; +, · , exp; 0, 1). Richardson (1991) investigated univariate 
exponential polynomials, and devised the so-called false/pseudo-derivative sequences for estimating 
the numbers of real roots of them. The result was an overestimate because some non-real roots were 
not ruled out then. Maignan (1998) applied this method to a class of bivariate exponential polyno-
mial equations. Recently, Achatz et al. (2008) first presented a complete algorithm to isolating distinct 
real roots of univariate exponential polynomials. Their main idea is to isolate real roots of the orig-
inal function when real roots of the simpler pseudo-derivative have been isolated. The termination 
is guaranteed by Lindemann’s theorem. McCallum and Weispfenning (2012) varied this isolation al-
gorithm for two similar functions obtained by replacing the exponential function with the logarithm 
function and the inverse tangent function, respectively, and proposed the decision procedure for mul-
tivariate sentences transcendental only in the first variable (i.e. the theories Texp, Tln, Tarctan to be 
specified later). Meanwhile, Strezeboński (2008, 2009) studied the real root isolation of larger classes 
of univariate transcendental functions—exp–log functions and tame elementary functions, respectively. 
But the termination of the isolation algorithm depends on Schanuel’s conjecture (Richardson, 1997). 



Download	English	Version:

https://daneshyari.com/en/article/401758

Download	Persian	Version:

https://daneshyari.com/article/401758

Daneshyari.com

https://daneshyari.com/en/article/401758
https://daneshyari.com/article/401758
https://daneshyari.com/

