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0. Introduction

In the first part of this note we analyze a well-known generalization to arbitrary commutative 
rings of the notion of primitive polynomials over factorial domains. The defining condition for this 
generalization has been used in Sharma (1981) for investigating principal ideals in a polynomial ring 
over a domain, but e.g. the application of this definition to questions on triangular systems in Lemaire 
et al. (2011) or Li (2010) shows that its relevance is not restricted to domains. As for domains the sit-
uation has been thoroughly investigated in the past decades with equivalent conditions (see e.g. Tang, 
1972, Arnold and Sheldon, 1975 or Anderson and Zafrullah, 2007) we do not rule out rings with 
zero-divisors, thus using a similar approach as in Lemaire et al. (2011) or Li (2010). The characteriza-
tion we give in Theorem 1 shows that the generalized notion we use here is for domains equivalent 
to super-primitive polynomials (cf. Tang, 1972), so we use the name s-primitive and call s-primitive 
polynomials super-primitive if the leading coefficient is a non-zero-divisor.

Main subject of this note is the use of super-primitive polynomials connected with triangu-
lar systems of multivariate polynomials, in particular with their saturation ideal (see e.g. Aubry et 
al., 1999 or Wang, 2000 for a detailed access to these notions). Polynomials with leading coeffi-
cient a non-zero-divisor play a prominent role in regular triangular systems and thus are essential 
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for algorithms describing the zero-sets of multivariate polynomials. In Lemaire et al. (2011) (called 
“weakly primitive”) s-primitive polynomials are shown to be very useful in the context of regular 
triangular systems. But the assertions made in Lemaire et al. (2011), Theorem 4.4 and Li (2010), 
Thm. 2.5 are not correct as we can show by an example. In Theorem 3 we prove a criterion for a 
triangular system to generate its saturation ideal. Our approach in this paper to triangular systems is 
quite general, valid for arbitrary commutative rings.

The content is organized as follows: after having defined and shown first properties of s-primitive 
polynomials, we collect some basic (and well-known) results to prepare the proofs in the subsequent 
chapters. In Section 1, s- and super-primitive polynomials are characterized, in Section 2 these results 
are applied to ideals in a polynomial ring and in Section 3 to triangular systems.

Notation. The basic concepts of Commutative Algebra used in this note are contained e.g. in Atiyah 
and Macdonald (1969) or Kaplansky (1974). If R is a commutative ring and M an R-module, an 
element x of R is called a zero-divisor on M , if x annihilates some non-zero element of M . An ideal I
of a commutative ring R has grade 1, if it contains a non-zero-divisor x of R such that I consists only 
of zero-divisors on R/xR . An element q of a commutative ring R is called irreducible, if it is non-zero, 
not a unit and has no proper factors other than units; q is called prime, if qR is a non-zero prime 
ideal of R . A domain R is called a factorial domain (or a UFD), if any non-zero non-unit element of R
can be expressed as a finite product of prime elements. For a polynomial f ∈ R[X], deg f denotes the 
degree of f , c( f ) the ideal of R generated by the coefficients of f and l( f ) the leading coefficient 
of f ; in particular deg 0 = −1, c(0) = 0 and l(0) = 0. If I is an ideal of R , we denote for any f ∈ R[X]
the canonical image of f in R/I[X] by the same symbol f . As in Tang (1972), Arnold and Sheldon
(1975) or Anderson and Zafrullah (2007), f ∈ R[X] is called primitive if c( f ) is not contained in any 
proper principal ideal of R .

In the following R denotes a commutative ring with unit and Q (R) the total ring of fractions of R , 
i.e. the localization of R with respect to the multiplicative set of non-zero-divisors of R .

Definition. A polynomial f = a0 + . . . + an Xn ∈ R[X] with an �= 0 is called s-primitive (in R[X]), if for 
any b ∈ R such that bai ∈ an R for each i = 0, . . . , n − 1, one has b ∈ an R . f is called super-primitive
(in R[X]), if f is s-primitive and an is not a zero-divisor in R .

Proposition 0. Let f = a0 + . . . + an Xn ∈ R[X] with an �= 0.

a) If R is a factorial domain, then f is super-primitive (resp. s-primitive, resp. primitive) iff gcd(a0, . . . ,
an) = 1.

b) f is s-primitive if c( f ) = R; in particular, any monic polynomial is super-primitive.
c) f is s-primitive if a j is not a zero-divisor in R/an R for some j ∈ {0, . . . , n − 1}.
d) If n = 0, then f is super-primitive (resp. s-primitive, resp. primitive) iff a0 is a unit of R.
e) If n = 1, then f is s-primitive iff a0 is not a zero-divisor in R/a1 R.
f) Let R = ∏

i∈I Ri be a direct product of commutative rings Ri and a0 = (a0i)i∈I , . . . , an = (ani)i∈I ∈ R
such that ani �= 0 for each i ∈ I . Then f is s-primitive (resp. super-primitive) in R[X] iff for each i ∈ I
f i(X) := a0i + . . . + ani Xn ∈ Ri[X] is s-primitive (resp. super-primitive) in Ri[X].

g) If f is super-primitive, then f is primitive.

Proof. a) If f is not s-primitive, then there is a b ∈ R such that bai ∈ an R for i = 0, . . . , n − 1
but b /∈ an R . Then b gcd(a0, . . . , an) = gcd(ba0, . . . , ban) ∈ an R and thus a prime factor of an divides 
gcd(a0, . . . , an), i.e. gcd(a0, . . . , an) �= 1.

If gcd(a0, . . . , an) �= 1, put b := an/ gcd(a0, . . . , an). Then b /∈ an R , but bai = anai/ gcd(a0, . . . , an) ∈
an R for i = 0, . . . , n − 1, showing that f is not s-primitive.

The other assertions follow immediately from the definitions.
b) For i = 0, . . . , n choose bi such that a0b0 + . . . + anbn = 1 and let b ∈ R be such that bai ∈ an R

for i = 0, . . . , n − 1. Then b = b(a0b0 + . . . + anbn) = ba0b0 + . . . + banbn ∈ an R .
c) Let b ∈ R be such that bai ∈ an R for i = 0, . . . , n − 1. As a j is not a zero-divisor in R/an R for 

some j ∈ {0, . . . , n − 1}, b ∈ an R .
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