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In this paper, we introduce a variant of the Descartes method to
isolate the real roots of a square-free polynomial F (x) = ∑n

i=0 Ai xi

with arbitrary real coefficients. It is assumed that each coefficient
of F can be approximated to any specified error bound. Our
algorithm uses approximate arithmetic only, nevertheless, it is
certified, complete and deterministic. We further provide a bound
on the complexity of our method which exclusively depends on the
geometry of the roots and not on the complexity of the coefficients
of F . For the special case, where F is a polynomial of degree n
with integer coefficients of maximal bitsize τ , our bound on the
bit complexity writes as Õ (n3τ 2). Compared to the complexity of
the classical Descartes method from Collins and Akritas (based on
ideas dating back to Vincent), which uses exact rational arithmetic,
this constitutes an improvement by a factor of n. The improvement
mainly stems from the fact that the maximal precision that is
needed for isolating the roots of F is by a factor n lower than the
precision needed when using exact arithmetic.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Computing the roots of a univariate polynomial can be considered as one of the fundamental prob-
lems in computational algebra, and numerous approaches have been proposed in the last decades to
solve this problem. In this paper, we focus on the problem of isolating the real roots of a square-free
polynomial F ∈ R[x] with arbitrary real coefficients. More precisely, given approximations of the co-
efficients of F to an arbitrary precision, we aim to compute disjoint intervals J1, . . . , Jm such that
each J i contains exactly one root of F and such that their union contains all real roots of F . For
polynomials with integer coefficients, the so-called Descartes method (or “Vincent–Collins–Akritas”
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method),1 first introduced by Collins and Akritas (1976), constitutes one of the simplest and most
efficient algorithms. In order to better understand the contribution of this paper, we briefly review
the algorithm: It starts with an interval I containing all real roots of F and recursively proceeds as
follows: For an interval I = (a,b) ⊂ I , Descartes’ Rule of Sign is used to test I for roots of F . If it
yields that the number m of roots contained in I equals zero, I is discarded. If it yields that m = 1,
then I is stored as an isolating interval. In all other cases, I is subdivided into two equally sized subin-
tervals I� := (a,m(I)) and Ir := (m(I),b), where m(I) denotes the midpoint of I . For a polynomial F
of degree n with integer coefficients of bit-size τ , the Descartes method induces a recursion tree of
size O (n(τ + logn)), where the latter bound has shown to be optimal (Eigenwillig et al., 2006). For
Descartes’ Rule of Signs, we need to compute the polynomial2

F I,rev(x) := (x + 1)n · F

(
ax + b

x + 1

)
. (1.1)

Using asymptotically fast Taylor shifts (Gerhard, 2004; von zur Gathen and Gerhard, 1997; Schönhage,
1982), the cost for this computation is bounded by

Õ
(
n2(log+ max

(|a|, |b|) + log+ |b − a|−1)) = Õ
(
n3τ

)
(1.2)

bit operations,3 where we define log+(x) := log max(2, |x|) � 1 for all x ∈C and log := log2. The bound
in (1.2) follows from the fact that we have to perform Õ (n) arithmetic operations and that F I,rev has
rational coefficients of bit-size O (n(log+ max(|a|, |b|)+ log+ |b −a|−1)) = Õ (n2τ ). Multiplication of the
bound on the recursion tree and the bound (1.2) on the bit complexity for the computations at each
node yields the bound Õ (n4τ 2) on the overall bit complexity of the Descartes method.

The advantages of the Descartes method are its simplicity and that the size of the recursion tree
adapts well to the geometric locations of the roots, that is, the recursion tree becomes large if and
only if some of the roots are clustered. A disadvantage of the Descartes method is that the exact com-
putation of the polynomials F I,rev needs a precision of Θ̃(n2τ ) in the worst case, whereas separating
the roots from each other needs only Õ (nτ ) bits. In fact, the binary representation of the endpoints
of all isolating intervals returned by the algorithm needs no more than Õ (nτ ) bits. This brings up
the question whether approximate computation of the polynomials F I,rev yields any improvement
with respect to the precision demand during the computation and, thus, also with respect to the bit
complexity of the Descartes method. This question has been addressed in a series of previous pa-
pers: Johnson and Krandick (1997) introduced a hybrid method that uses interval arithmetic based
on floating point computation (up to a certain fixed precision) to compute the polynomials F I,rev.
This allows to determine the signs of the coefficients of F I,rev (and, thus, to use Descartes’ Rule
of Signs) for most of the considered intervals within the subdivision process by using approximate
arithmetic, whereas, for the remaining intervals, the method falls back to exact computation. Hence,
floating point arithmetic is used as a filter which allows to decrease the precision demand for most
intervals, however, no improvement is achieved with respect to worst case bit complexity. Rouillier
and Zimmermann (2004) modified the latter approach by arbitrarily increasing the working preci-
sion at each stage of the algorithm. It is currently one of the fastest algorithms in practice (e.g. the
univariate solver in Maple is based upon this method), however, no result on the needed precision de-
mand and its computational complexity is known, and we expect that, without further modifications,

1 There exist numerous discussions (e.g. Akritas, 2008) about whether “Descartes method” is the correct term since Descartes
did not introduce any algorithm to isolate the roots but (only) a method to estimate the number of positive roots of a univariate
polynomial (i.e. Descartes’ Rule of Signs). However, because of the fact that the algorithm from Collins and Akritas (based on
ideas dating back to Vincent) exclusively uses this rule as inclusion and exclusion predicate, it is reasonable to name the
algorithm after Descartes without using the possessive “s” following his name.

2 Descartes’ Rule of Sign states that the number m of roots contained in I is upper bounded by the number v of sign changes
in the coefficient sequence of F I,rev and that v ≡ m mod 2. For more details, we refer to Section 2.6.

3 According to Cauchy’s Root Bound (see e.g. Yap, 2000), we can assume that I ⊂ (−1 − 2τ ,1 + 2τ ), and thus
max(1, |a|, |b|) � 1 + 2τ . In addition, Descartes method does not subdivide intervals of size less than half of the minimal
distance between two distinct roots of F (i.e. the separation σF of F ), and log max(1, σF ) = O (n(τ + logn)); see Section 2.6 for
details.
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