Int. J. Human-Computer Studies 92-93 (2016) 44-54

Int. J. Human-Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Contents lists available at ScienceDirect

uman-
Computer
Studies

Leveraging human computation for pure-text Human Interaction

Proofs

@ CrossMark

Kemal Bicakci, Hakan Ezgi Kiziloz *

TOBB University of Economics and Technology, Ankara, Turkey

ARTICLE INFO

Article history:

Received 15 August 2015
Received in revised form

9 April 2016

Accepted 18 April 2016
Available online 23 April 2016

Keywords:

Human Interaction Proof
Human computation
User study

ABSTRACT

Even though purely text-based Human Interaction Proofs (HIPs) have desirable usability and accessibility
attributes; they could not overcome the security problems yet. Given the fact that fully automated
techniques to generate pure-text HIPs securely do not exist, we propose leveraging human computation
for this purpose. We design and implement a system called SMARTCHA, which involves a security engine
to perform automated proactive checks on the security of human-generated HIPs and a module for
combining human computation with automation to increase the number of HIP questions. In our work,
we employ HIP operators who generate around 22 000 questions in total for SMARTCHA system. With a
user study of 372 participants, we evaluate the usability of SMARTCHA system and observe that users
find solving pure-text HIPs of SMARTCHA system significantly more enjoyable than solving reCAPTCHA
visual HIPs.

Security
Usability
Accessibility

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Tests for Human Interaction Proof (HIP), which are supposed to
be passed by humans easily, but not by computers, have become
the de-facto security countermeasure for many Internet applica-
tions. Although many different types of HIPs have been proposed
so far, new studies investigating the security and usability trade-
off are still worthy. For instance, many HIP tests which involve
distorted characters may be broken by automated scripts, and
generally, responses to broken HIPs have introduced a more
stressful and laborious environment for end users.

Yet another problem is accessibility, i.e., visually impaired users
cannot pass these tests. Corporations like Google and Yahoo en-
deavor to solve this problem by introducing audio HIPs which
involves the correct understanding and typing of the letters, digits
or words recorded intermittently and/or in a noisy environment.
Unfortunately, these audio HIPs are shown to be too difficult to
solve. In a large-scale study, average solving accuracy was reported
as around 35% for Google's scheme (Bursztein et al., 2010).

One method that has the potential to solve usability and ac-
cessibility problems is pure-text HIPs,! which do not have any

* Corresponding author.
E-mail addresses: bicakci@etu.edu.tr (K. Bicakci),
hakanezgi@etu.edu.tr (H.E. Kiziloz).
! In the literature, HIP tests which involve images showing distorted texts are
also sometimes referred as text-based. We use the term “pure-text” to differentiate
these two very different approaches.

http://dx.doi.org/10.1016/].ijhcs.2016.04.007
1071-5819/© 2016 Elsevier Ltd. All rights reserved.

graphical elements and can be presented solely as text. These HIPs
can be solved by vision-disabled users by the help of software
which reads the intended part of the screen by synthesized voice.”
However, producing pure-text HIPs that provide an acceptable
level of security is an unsolved research problem (Godfrey, 2002).
For instance, it is quite possible to solve HIPs automatically with
basic parsing techniques if they involve simple arithmetic ques-
tions like “what is 3+57".

The insecurity of pure-text HIPs can be attributed to insufficient
number of base questions from which all test questions are gen-
erated and which can be categorized into a few types of questions.
For instance, if we closely examine a deployed system (i.e., text-
CAPTCHA, Tuley, 2006) which has more than 180 million pure-text
HIP tests in its database, we see that all tests fall under a few basic
types of questions (detailed in Section 2.1). As a result, a small
program searching for known patterns in the tests could easily
guess the correct answer with a high success rate.

Our key insight on pure-text HIP tests is as follows. The security
provided by pure-text HIPs could be improved if they do not in-
volve a small number of exploitable patterns. In order to have this
property, we generate the HIP tests semi-automatically using a
large base of diverse questions. The questions are produced

2 We are aware how challenging using the screen readers can be; we are only
trying to ease the burden on the visually impaired. Interested readers may check
Dosono et al. (2015) to understand the limitations of screen readers and Bigham
and Cavender (2009) to face encountered problems in this domain, both with
empirical results.


www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.04.007
http://dx.doi.org/10.1016/j.ijhcs.2016.04.007
http://dx.doi.org/10.1016/j.ijhcs.2016.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.04.007&domain=pdf
mailto:bicakci@etu.edu.tr
mailto:hakanezgi@etu.edu.tr
http://dx.doi.org/10.1016/j.ijhcs.2016.04.007

K. Bicakci, H.E. Kiziloz / Int. ]. Human-Computer Studies 92-93 (2016) 44-54 45

manually by human operators ensuring that the base questions are
not derived from one another. To diversify the human computa-
tion for the generation of base questions, we get assistance from a
crowdsourcing service such as Amazon's Mechanical Turk (Mar-
ketplace for Work, 2005). Although human computation was
previously employed for solving HIP tests (Bursztein et al., 2010),
our work is the first to use it for generating HIP tests rather than
solving them. Due to relaxation of the requirement of being
“completely automated”, we avoid using the term CAPTCHA in our
work. Instead, we coin a new term and call our approach as
SMARTCHA (SeMi Automated Reverse Turing test to tell Computer
and Human Apart).
The main research contributions in our work are as follows:

® We design and implement an expandable architecture of a se-
curity engine to check security of human-generated pure-text
HIPs.
e We investigate viability, effectiveness and performance of em-
ploying human computation for generation of pure-text HIPs.
® We introduce “semi-automation” as a novel concept to have
theoretically infinite number of tests using human-generated
HIPs as base questions.

e With a user study, we evaluate the usability® of SMARTCHA and
compare it with reCAPTCHA visual HIPs (Official Web Page,
2007).

The rest of the paper is organized as follows. Earlier work on
accessible and pure-text HIPs is discussed in Section 2. We in-
troduce our solution called SMARTCHA in Section 3. We perform a
user study with 372 participants to test the usability of SMARTCHA
system against reCAPTCHA visual HIPs. The methodology and the
report of the results are given in Section 4. We finish the paper in
Section 5 by presenting concluding remarks and possible future
plans for SMARTCHA.

2. Earlier work

To our knowledge, the concept of pure-text HIPs was first in-
vestigated by Godfrey (2002). In his work, users were shown a
paragraph of text in which one of the words was replaced with a
bogus word. Users were asked to find out which word was chan-
ged. In the same study, Godfrey also presented a successful attack
to this method achieving a success rate of 39%. In the attack, a
trigram model was used to predict the likelihood of existence of a
bogus word.

A second pure-text HIP proposal by Godfrey focused on ob-
fuscating sentences using a trigram model. A valid sentence (i.e.,
Good sentence) and a randomly generated sentence (i.e., Bad
sentence) were retrieved from a corpus. Then, a trigram transfor-
mation was applied on both sentences for obfuscation. Users were
asked to identify the Good sentence. Godfrey states that humans
may be able to do better than guessing.

One other study by Bergmair and Katzenbeisser (2004) sug-
gested using word-sense ambiguity for creating pure-text HIPs. In
this proposal, a word which has synonyms, that the synonym has
multiple meanings itself, is chosen and new sentences are created
using the synonyms. Doing this, some sentences still make sense
whereas others become meaningless. Users are asked to choose
the correct sentence which still makes sense.

In another study by Ximenes et al. (2006), a pure-text HIP test
was designed using Knock-Knock jokes. In a usability study, users

3 For our study, we define the term “usability” as the extent to which a HIP can
be solved with correctness, efficiency, and user satisfaction.

were prompted with three text messages of Knock-Knock jokes.
Only one of them was a real joke and users were asked to find it.
Users have to pass the tests two times in order to prove they are
human. Only 30% of the users could pass the test.

Yamamoto et al. (2010) proposed a pure-text HIP asking users
to distinguish five sentences obtained from a book or a newspaper
from ten made-up sentences which are for instance automatically
translated from another language. It was stated that sentences
should not be taken directly from Internet due to security issues;
yet, the authors did not discuss how to increase the number of
sentences automatically. The authors also reported that the us-
ability of the system needs improvement.

Chew and Tygar (2005) introduced a CAPTCHA idea based on
collaborative filtering which allows us to ask questions that have
no absolute answers. In their study, the system is first trained with
answers of real users. Then, new users taking the HIP test are
asked questions and their answers are analyzed using the training
data in order to see if they match with prior human answers. The
authors discussed security requirements for input data and the
limitations of the system.

It is not yet possible to generate secure pure-text HIPs in a
completely automated fashion (Godfrey, 2002; Bergmair and
Katzenbeisser, 2004; Ximenes et al., 2006; Yamamoto et al.,
2010; Chew and Tygar, 2005). Furthermore, prior work on acces-
sibility of HIP systems, both pure-text and non-pure-text, gen-
erally struggle with this problem. Information about data sets of
some of the accessible HIP systems is given in Table 1.

2.1. A pure-text service: TextCAPTCHA

Despite earlier negative results on their security properties, we
have seen that pure-text HIPs represent a modest success in
practice as a simple web service (Tuley, 2006). According to its
web page, textCAPTCHA system has more than 180 million HIP
tests in its database. The system provides around 271.000 HIP tests
daily to WordPress as well as many other websites as a free web
service. Even though there is no information on how the test
questions are generated, it is certain that automatic techniques are
used due to the reported number of questions in the database. An
example question in textCAPTCHA database can be given as “Arm,
bee or elephant: the body part is?” or “The 2nd colour in green, red
and house is?”.

The security of textCAPTCHA service can be broken very easily;
a fact also acknowledged on its web site (Tuley, 2006). Since all
questions are automatically generated using a few question pat-
terns, identifying these patterns and solving the questions ac-
cordingly with a small computer program is straightforward.
TextCAPTCHABreaker (Anwar, 2011), a Python application devel-
oped as an open source project, reportedly solves HIP tests of
textCAPTCHA service correctly with an overall success rate of
99.5% (Anwar, 2011).

3. Our solution: SMARTCHA

One of the lessons that can be drawn from the security analysis
of textCAPTCHA service given in Section 2.1 is that, if all questions
are derived from a few base question types, an automated pro-
gram could easily give correct answers by exploiting the existing
patterns. Hence, to improve security, a reasonable strategy could
be the generation of questions not having any common pattern. In
our work, we do not attempt to implement the aforementioned
strategy with a fully automated method. Instead, we suggest get-
ting the benefit of “human computation” for this purpose.

The concept of human computation was introduced in 1838
(Wayland, 1838). In computer science, it was first used by Alan



Download English Version:

https://daneshyari.com/en/article/401821

Download Persian Version:

https://daneshyari.com/article/401821

Daneshyari.com


https://daneshyari.com/en/article/401821
https://daneshyari.com/article/401821
https://daneshyari.com

