
Reusing UI elements with Model-Based User Interface Development$

A. Delgado a,n, A. Estepa a, J.A. Troyano b, R. Estepa a

a Department of Telematics Engineering, University of Seville, Camino de los descubrimientos s/n., 41092 Seville, Spain
b Department of Computer Languages and Systems, University of Seville, Reina Mercedes s/n., 41012 Seville, Spain

a r t i c l e i n f o

Article history:
Received 5 February 2014
Received in revised form
13 August 2015
Accepted 3 September 2015
Communicated by Fabio Paterno
Available online 11 September 2015

Keywords:
MBUID
Reuse
Software engineering
User Interface

a b s t r a c t

This paper introduces the potential for reusing UI elements in the context of Model-Based UI Develop-
ment (MBUID) and provides guidance for future MBUID systems with enhanced reutilization capabilities.
Our study is based upon the development of six inter-related projects with a specific MBUID environ-
ment which supports standard techniques for reuse such as parametrization and sub-specification,
inclusion or shared repositories.

We analyze our experience and discuss the benefits and limitations of each technique supported by
our MBUID environment. The system architecture, the structure and composition of UI elements and the
models specification languages have a decisive impact on reusability. In our case, more than 40% of the
elements defined in the UI specifications were reused, resulting in a reduction of 55% of the specification
size. Inclusion, parametrization and sub-specification have facilitated modularity and internal reuse of UI
specifications at development time, whereas the reuse of UI elements between applications has greatly
benefited from sharing repositories of UI elements at run time.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Model-Based User Interface Development describes the user
interface (UI) through a collection of models which guide the UI
development process. Such models can also drive the UI genera-
tion process in a (semi) automated fashion such as in model-
driven engineering (MDE), which should reduce the work needed
to develop UIs, resulting in a more productive software develop-
ment process (Viana and Andrade, 2008; Meixner et al., 2010).

MBUID environments (MBUIDEs) have proliferated over the
last decades, giving rise to a number of different toolsets and
specification languages (Pinheiro da Silva, 2001; Guerrero-García
et al., 2009; Meixner et al., 2011). However, in spite of the plethora
of available approaches, no MBUIDE has experienced wide adop-
tion by the software industry (Trætteberg, 2008; Molina, 2004). As
envisaged by some authors (Pinheiro da Silva, 2001; Ahmed and
Ashraf, 2007) the poor reusability of UI model specifications can be
argued to partially explain this lack of interest from the industry.
More recently, Meixner et al. (2011) have supported this idea,
pointing also to the lack of harmonization between the MBUID and
MDE worlds, as well as the absence of real-world usage and case

studies as important challenges to be faced by MBUID systems in
the future. This paper addresses some of these challenges, focusing
specifically on reusability.

In general, software reuse increases productivity and software
quality as reported in many industrial cases (Mohagheghi and
Conradi, 2007), such benefits should also be present in the context
of MBUID. Although some environments have been equipped with
techniques to support reuse, issues and methods associated with
the reuse of UI components and the benefit/cost associated have
been shortly addressed in the MBUID community. One possible
reason for this could be the complexity of the subject, which
involves several inter-related questions such as (a) which UI
fragments or models can be subjected to reuse; (b) what technical
approaches can be used; and (c) how to assess the benefits of
reusing. As stated in Meixner et al. (2011), the answer to these
questions becomes even more complicated since emerging stan-
dards such as W3C task (Paternò et al., 2014) or Abstract UI models
(Vanderdonckt et al., 2014) are not widely adopted yet, and there
are scarce real-world usage and case studies that quantify the
potential benefits of reusing UI assets.

This paper aims to be a first step in gaining insight into how
elements from UI models can be reused. We provide a real-world
usage case through the development of six applications with an
environment that supports some standard reuse techniques such
as parametrization and sub-specification, inclusion or shared
repositories. We describe our experience and quantify the benefits

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
1071-5819/& 2015 Elsevier Ltd. All rights reserved.

☆This paper has been recommended for acceptance by Fabio Paterno.
n Corresponding author.
E-mail addresses: aldelgado@us.es (A. Delgado), aestepa@us.es (A. Estepa),

troyano@us.es (J.A. Troyano), rafaestepa@us.es (R. Estepa).

Int. J. Human-Computer Studies 86 (2016) 48–62

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.09.003&domain=pdf
mailto:aldelgado@us.es
mailto:aestepa@us.es
mailto:troyano@us.es
mailto:rafaestepa@us.es
http://dx.doi.org/10.1016/j.ijhcs.2015.09.003


of intra- and inter-project reuse of UI specifications. Based on our
experience, we provide lessons learned that can be valid for other
contexts and provide some advice on the development of future
MBUIDEs with potentiated reuse features.

The remainder of this paper is as follows: Section 2 briefly
introduces the main concepts of MBUID. Section 3 summarizes
current reuse approaches already present in the context of MBUID.
Sections 4 and 5 describe the main characteristics of the MBUIDE
used in our case study and the techniques supported for reusing UI
elements respectively. Section 6 introduces our study case. Section 7
addresses the results based upon our experience, discussing the use
of each reuse technique and providing quantitative results of the
benefits obtained. Section 8 provides an analysis of the main points
of our results. Finally, Section 9 concludes the paper.

2. MBUID overview

MBUID offers an environment for developers to design and
implement UIs in a professional, consistent and systematic way
(Pinheiro da Silva, 2001; Meixner et al., 2011, 2010). MBUID is
based on the idea that the UI can be fully modeled by a set of
declarative models each addressing particular facets of the UI such
as tasks and presentation. The specification of each model consists
of an abstract description of the aspects pertaining to its domain
by means of a so-called UI Description Language (Guerrero-García
et al., 2009). Model specifications lead the UI development life-
cycle and provide the basics for automatic UI generation.

Consensus on the set of models and languages for UI descrip-
tion has remained elusive in the past. Most MBUIDEs have defined
their own languages and models (Guerrero-García et al., 2009;
Meixner et al., 2011). However, some models were recurrently
used by a number of environments in the early 00s (Pinheiro
da Silva, 2001; Vanderdonckt et al., 2003):

� The User model, which specifies a hierarchical break-down of
users in stereotypes that share a common role.

� The Domain model, used to define the objects accessible to users
via the UI.

� The Task model, which describes the set of tasks that users are
able to accomplish, its hierarchical decomposition and its tem-
poral relations and conditions.

� The Presentation model, devoted to presentation aspects of the
UI. It can, in turn, be decomposed into the Abstract Presentation
model, dealing with abstract level descriptions of the structure
and behavior of the UI objects, and the Concrete Presentation
model that describes in detail the parts of the UI using modality-
dependent (i.e. graphic and haptic) concrete interaction objects
(Vanderdonckt and Bodart, 1993).

� The Dialog model, which defines the set of actions the user can
carry out within various system states and the transition
between these states. It links tasks with interaction elements
forming a bridge between the Task and the Presentation
models.

According to Meixner et al. (2011), the Task, Presentation and
Dialog models can be considered the core models since they have
direct influence on the content and appearance of the UI.

Different MBUID approaches can be related using the Cameleon
Reference Framework (CRF) (Calvary et al., 2003). Since its defi-
nition in 2003, the CRF has become widely accepted in the HCI
community as a reference for classifying UIs supporting multiple
targets, or multiple contexts of use on the basis of a model-based
approach (Meixner et al., 2011). The framework describes different
layers of abstraction related to the model-based development of
user interfaces:

� Concepts-and-Tasks: Specifies the hierarchies of tasks that need
to be performed on/with domain objects (or domain concepts)
for a particular interactive system (Meixner et al., 2010). Tradi-
tional Domain and Task models belong to this abstraction layer.

� The Abstract UI: Expresses the UI in terms of interaction units
without making any reference to implementation in terms of
interaction modalities or technological space (e.g. computing
platform, programming or markup language) (Vanderdonckt
et al., 2014). Abstract presentation or dialog models belong to
this layer of abstraction.

� The Concrete UI: Describes concretely how the UI is perceived by
the users using concrete interaction objects (Vanderdonckt and
Bodart, 1993). These objects are modality-dependent but
implementation-language-independent. Concrete Presentation
models belong to this layer.

� The Final UI: Expresses the UI in terms of implementation-
dependent source code. It can be represented in any UI
programming or mark-up language (e.g. Java or HTML).

The CRF distinguishes between development and run time
phases. In the development phase, initial model specifications are
refined in successive steps. Ultimately, a Final UI expressed in
source code is generated in a manual or automatic fashion from
the concrete UI (Fonseca et al., 2010). Final UIs can then be inter-
preted or compiled as pre-computed UIs targeted for specific
contexts of use (i.e. user, platform and/or environment) and
plugged into an environment that supports dynamic adaptation to
multiple targets at run time (Calvary et al., 2003).

3. Related work

Improving the reusability of model specifications in the context
of MBUID has been addressed in the past. The main approaches
found in the literature can be classified as:

� Reuse based on the UI Description Language: Some languages
have foreseen the need to reuse fragments of specifications and
have defined specific technical methods to deal with it. For
instance, Hyatt et al. (2001) allows referencing specification
fragments defined in the same document or included from an
external document using the special processing instruction
o?xul�overlay?4 . In XICL (Sousa and Leite, 2005; de Sousa
and Leite, 2006) the UI is made up of components which are
somehow similar to classes. XICL allows the inclusion of
components which can be extended through certain language
tags and attributes (e.g. extends, child) in an analog way to
object-oriented programming. In UIML (Abrams and Helms,
2004), frequently used specification fragments can be defined
as templates using the otemplate4 tag, and reused in a
flexible way (e.g. cascade, replace or union the referenced
element). In addition, templates can receive parameters whose
value will be passed when referencing. All previous approaches
allow the developer to create a library of reusable assets,
enabling the scope of the reuse to be internal (i.e. intra-project)
or external (i.e. inter-projects).

� Reuse through multiple transformations: Third (TERESA Mori
et al., 2003, XMobile Viana and Andrade, 2008) and fourth
generation (e.g. MARIA Paternò et al., 2009, GUMMYMeskens et
al., 2008) MBUIDEs are capable of generating multi-target UIs
(Meixner et al., 2011). Therefore, a single UI model specification
can be transformed multiple times targeted to different context
of use which are defined for a set of users, hardware and
software platforms, and physical environment (Calvary et al.,
2003). This can be viewed as a kind of generative programming
(Mohagheghi and Conradi, 2007). The scope of reuse is normally

A. Delgado et al. / Int. J. Human-Computer Studies 86 (2016) 48–62 49



Download English Version:

https://daneshyari.com/en/article/401833

Download Persian Version:

https://daneshyari.com/article/401833

Daneshyari.com

https://daneshyari.com/en/article/401833
https://daneshyari.com/article/401833
https://daneshyari.com

