
A mental model perspective for tool development and paradigm shift
in spreadsheets$

Bennett Kankuzi, Jorma Sajaniemi n

University of Eastern Finland, School of Computing, Joensuu Campus, Joensuu, Finland

a r t i c l e i n f o

Article history:
Received 11 December 2014
Received in revised form
8 October 2015
Accepted 26 October 2015
Communicated by Francoise Detienne
Available online 9 November 2015

Keywords:
Spreadsheets
Mental models
Paradigm shift
Debugging
Errors

a b s t r a c t

To address the problem of errors in spreadsheets, we have investigated spreadsheet authors' mental
models in a hope of finding cognition-based principles for spreadsheet visualization and debugging tools.
To this end, we have conducted three empirical studies. The first study explored the nature of mental
models of spreadsheet authors during explaining and debugging tasks. It was found that several mental
models about spreadsheets are activated in spreadsheet authors' minds. Particularly, when explaining a
spreadsheet, the real-world and domain mental models are prominent, and the spreadsheet model is
suppressed; however, when locating and fixing an error, one must constantly switch back and forth
between the domain model and the spreadsheet model, which requires frequent use of the mapping
between problem domain concepts and their spreadsheet model counterparts. The second study
examined the effects of replacing traditional spreadsheet formulas with problem domain narratives in
the context of a debugging task. Domain narratives were found to be easy to learn and they helped
participants to locate more errors in spreadsheets. Furthermore, domain narratives also increased the use
of the domain mental model and appeared to improve the mapping between the domain and spread-
sheet models. The third study investigated the effects of allowing spreadsheet authors to fix errors by
editing domain narratives, thus relieving them from the use of traditional low-level cell references. This
scenario was found to promote spreadsheet authors using even more of their domain mental model in a
manner that completely overshadowed the use of their spreadsheet mental model. Thus, from a mental
model perspective, it is possible to devise a new spreadsheet paradigm that uses domain narratives in
place of traditional spreadsheet formulas, thus automatically presenting spreadsheet content so that it
prompts spreadsheet authors to think in a manner that closely corresponds to their mental models of the
application domain.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

Despite the popularity of spreadsheets, the current spreadsheet
paradigm has its drawbacks. Many spreadsheets contain non-
trivial errors that not only go unnoticed but also have led to sig-
nificant economic losses (Galletta et al., 1996; Panko, 1998, 2000;
Powell et al., 2009). Although many tools and techniques have
been developed to help address the problem of errors in spread-
sheets, the problem nevertheless persists. Current tools (e.g.,
Abraham and Erwig, 2005, 2007; Ayalew et al., 2000; Clermont
et al., 2002; Davis, 1996; Erwig et al., 2005; Grigoreanu et al., 2010;
Kankuzi and Ayalew, 2008; Mittermeir and Clermont, 2002;

Sajaniemi, 2000) are based on their developers' intuition; how-
ever, it would be more appropriate if tools were based on
empirical evidence such as user studies based on cognitive
psychology.

A common assertion is that humans have mental models of the
systems with which they interact, and it is often difficult to explain
many aspects of human behavior without resorting to a construct
such as mental models (Rouse and Morris, 1986). It is therefore
important to first understand what types of mental models are
activated when spreadsheet authors are conducting different
spreadsheet tasks. Understanding the mental models will lead to a
better understanding of why the spreadsheet process is so error-
prone and to enable the development of new tools and techniques
that better correspond to spreadsheet authors' cognitive abilities.

Realizing that the term “mental model” has been defined dif-
ferently by different researchers, in our context, we borrow the
definition of Forrester (1971) which was also cited by Doyle and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijhcs

Int. J. Human-Computer Studies

http://dx.doi.org/10.1016/j.ijhcs.2015.10.005
1071-5819/& 2015 Elsevier Ltd. All rights reserved.

☆This paper has been recommended for acceptance by Francoise Detienne.
n Corresponding author.
E-mail addresses: bfkankuzi@gmail.com (B. Kankuzi),

jorma.sajaniemi@uef.fi (J. Sajaniemi).

Int. J. Human-Computer Studies 86 (2016) 149–163

www.sciencedirect.com/science/journal/10715819
www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2015.10.005
http://dx.doi.org/10.1016/j.ijhcs.2015.10.005
http://dx.doi.org/10.1016/j.ijhcs.2015.10.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.10.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.10.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2015.10.005&domain=pdf
mailto:bfkankuzi@gmail.com
mailto:jorma.sajaniemi@uef.fi
http://dx.doi.org/10.1016/j.ijhcs.2015.10.005


Ford (1998): a mental model is a mental image of the world
around us that we carry in our heads depicting only selected
concepts and relationships that represent real systems. A mental
model, therefore, is a representation in a person's mind of the
physical world outside of that person, i.e., a mental model is a type
of mental representation. A mental model also depicts only
selected concepts and relationships regarding a system and as
such, does not represent the entire knowledge one has regarding a
system but rather a specialized subset of that knowledge.
Knowledge is, however, indispensable for understanding some-
thing, and knowledge without understanding is useless. Therefore,
a user's mental model of a system reflects the user's under-
standing of what the system contains, how the system works and
why the system works in that manner (Carroll et al., 1987). Thus,
for example, a spreadsheet developer's mental model of a
spreadsheet does not contain all possible information, but only
those aspects of the spreadsheet that the developer deems
appropriate for the task.

A person can also have simultaneous or parallel mental models
of a system that reflect the different levels of abstraction the
person may perceive of a particular system when conducting dif-
ferent tasks on the system (Carroll et al., 1987; Markman and
Gentner, 2001). Thus, for example, one mental model could
describe the technical aspects of a system and another model
could describe the purpose of the system. Flower and Hayes (1980)
observed that, in the process of writing, a person must work at
several levels of abstraction simultaneously, which again suggests
the existence of multiple mental models when one is conducting a
task. Flower and Hayes (1980) also observed that each level of
abstraction creates constraints that must be considered when
considering other levels. Therefore, it is important that simulta-
neous mental models map to one another accordingly for optimal
behavior.

In our research, we applied the theory of mental models in an
investigation comprising three studies. The first study explored
the nature of mental models of spreadsheet authors when those
authors are conducting various spreadsheet activities. The second
study gauged the effects of replacing traditional cell references by
problem domain concepts on spreadsheet comprehension and
debugging, and the third study investigated the effects of editing
spreadsheet formulas using problem domain concepts. These
studies not only illustrate the role of mental models in spreadsheet
activities and suggest recommendations for spreadsheet visuali-
zation and debugging tools but also suggest a paradigm shift in
spreadsheet calculation.

The rest of the paper is organized as follows: Section 2 dis-
cusses related works examining how other researchers have used
the concept of mental models for programmers in general and
spreadsheet users in particular, and how spreadsheet tools have
tried to visualize spreadsheets in problem domain terms. Sections
3, 4 and 5 describe the first, second, and third studies, respectively.
Section 6 presents a general discussion of the three empirical
studies and concluding remarks are given in Section 7.

2. Related work

Research into the psychology of programming (e.g., Brooks,
1983; Corritore and Wiedenbeck, 1991; Letovsky, 1987; von
Mayrhauser and Vans, 1995; Pennington, 1987) has revealed that
programmers have several mental models of a program, including
models such as the programming language level description and
the application or problem domain level description of the same
functionality. For example, Brooks (1983) theorized that program
creation involves understanding the problem domain representa-
tion; abstract data and algorithmic structure representation; the

concrete data and control structure representation of the program;
and the mappings between objects and relations in adjacent
representations. Such representations can be understood as
mental models, i.e., images of the program that depict only
selected concepts and relationships that represent the program.

To reveal the contents of a mental model, one must use a
knowledge elicitation technique (Cooke, 1994). A common tech-
nique to elicit programmers' mental models is program summary
analysis—a special form of content analysis (Stemler, 2001). Pro-
gram summary analysis has been used, for example, to char-
acterize mental models of novice- (Corritore and Wiedenbeck,
1991) and expert- (Pennington, 1987) programmers who attain
high levels of comprehension, to characterize the mental models
of students capable of reusing program code (Hoadley et al., 1996),
to describe how mental models depend on the underlying pro-
gramming paradigm (Good, 1999) or task type (O'Shea and Exton,
2004), and to evaluate learning outcomes in novice programmers
(Hughes and Buckley, 2004; Sajaniemi and Kuittinen, 2005). These
studies suggest that program summary analysis can be utilized to
reveal novice and expert programmers' mental models and that
the contents of the mental models can be used to characterize the
task performance of programmers.

Program summaries can come in various forms, such as tran-
scripts of audio or videotaped interviews and written explanations
of programs. The basic idea of program summary analysis is to ask
participants to provide a free-form explanation, or summary, of a
program just studied. Thus, program summaries allow participants
to express their thoughts in their own words, at their chosen level
of abstraction and detail (Good, 1999). By omitting detailed
instructions regarding the form of the summary, participants' own
preferences guide the selection of information in the summary;
thus, a wide variation in the responses is generally achieved. The
program summary methodology avoids the problems of false
positive results often associated with binary choice questions, and
the difficulties in designing sensitive and reliable multiple choice
questions (Good and Brna, 2004). In program summary analysis,
the focus is not on the correctness of the summary; instead, the
abstraction level and the types of information are more important
characterizations of the mental model than an error-free memor-
ization of the program code.

Different techniques can be used to analyze program summa-
ries. For example, Pennington (1987) analyzed program summa-
ries by dividing them into statements and classifying the state-
ments into procedural (control flow), data flow or function. Good
(1999) improved Pennington's technique by analyzing program
summaries using two independent measures: information types
classification and object description categories. Later, Byckling
et al. (2004) evaluated Good's technique and suggested some
improvements. In information types classification, program sum-
mary analysis is based on the type of information each statement
reveals regarding a program. Conversely, object description cate-
gories focus on the manner in which individual objects are
described in program summaries. There are seven categories in
Good's object description categories classification: program only—
references to objects that can occur only in the program realm;
program—references to objects that can be described at various
levels in program terms; program-real-world—reference to objects
that can occur in both the real-world and program realms; pro-
gram–domain —references to objects that can occur in both the
program realm and the problem domain; domain—references to
objects that can occur only in the problem domain; indirect
reference—anaphorically referencing an object; and unclear—
objects that cannot be classified because of ambiguity, lack of
clarity or lack of identification.

As an example of the findings obtained by program summary
analysis, Pennington (1987) observed that a program modification

B. Kankuzi, J. Sajaniemi / Int. J. Human-Computer Studies 86 (2016) 149–163150



Download English Version:

https://daneshyari.com/en/article/401840

Download Persian Version:

https://daneshyari.com/article/401840

Daneshyari.com

https://daneshyari.com/en/article/401840
https://daneshyari.com/article/401840
https://daneshyari.com

