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a b s t r a c t 

Scheduling with two competing agents has drawn a lot of attention lately. However, most studies fo- 

cused only on single-machine problems. In reality, there are many machines or assembly lines to process 

jobs. This study explores a parallel-machine scheduling problem. The objective is to minimize the total 

weighted completion time of jobs from agent 1 given a bound of the maximum completion time of jobs 

from agent 2. We develop a branch-and-bound algorithm to solve the problems with fewer jobs. In addi- 

tion, we propose genetic algorithms to obtain the approximate solutions. Computational results are given 

to evaluate the performance of the proposed algorithms. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

To survive today’s intense competition and meet challenges 

that develop rapidly, industries must reduce cost, shorten waiting 

times, maximize profits, and give satisfaction. To achieve the above 

goals, many industries use parallel-machine production. Some is- 

sues with this type of production need to be managed. For exam- 

ple, the orders may not come from a sole source. Some orders need 

to be completed as soon as possible, and some do not, or some or- 

ders are of different importance and incur different penalties for 

late completion. In light of these observations, jobs having various 

time priorities need to be carefully scheduled on parallel machines. 

An example of a tea shop is given as follows. Several servers 

deal with daily orders. Some bulk orders may be placed a week 

ahead of time via online shopping, and some orders are placed ver- 

bally in front of a brick-and-mortar bar. Some orders may involve 

an important international conference, and heavy tardiness fines 

may be imposed for these orders. Meanwhile, the face-to-face cus- 

tomers should not be kept waiting for a long time. Clearly, tradi- 

tional FCFS (First Come First Serve) rules are not good approaches 

to this type of production. 
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Multi-agent scheduling is a new concept that can be applied 

to many fields. The concept was first introduced in [1,2] . Baker 

and Smith [1] introduced a real-world instance commonly seen 

in R&D and production departments. An R&D department is con- 

cerned about meeting deadlines, but a production department is 

more concerned about a short response time. Agnetis et al. [2] con- 

sidered some two-agent problems. Each agent deals with a set of 

non-preemptive jobs and wants to minimize a certain objective 

function, e.g., number of tardy jobs or total weighted completion 

time. Wan et al. [3] provided an example in which jobs are divided 

into two parts: regular jobs and maintenance activities. Meiners 

et al . [4] showed an example in the field of telecommunication. To 

improve network efficiency, they viewed a packet as two distinct 

sets of jobs: deadline jobs, which represent real-time packets in a 

network, and flow jobs, which represent other packets in the net- 

work. Leung et al. [5] discussed some two-agent scheduling prob- 

lems and developed several mathematical properties. Each of the 

researchers above proposed a novel mathematical model, but nei- 

ther provided experimental analyses. For more research into multi- 

agent scheduling problems, please refer to [6–14] . 

Most two-agent scheduling problems are focused on single- 

machine scheduling. Liu et al. [15] considered the processing time 

of a job as an increasing linear function of its starting time. Two 

agents compete to perform their respective jobs on a common 

single machine, and each agent has its own criterion to optimize. 

Mor and Mosheiov [16] investigated batch scheduling on a single 
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machine. One agent minimizes the total completion time, and 

the other must complete all its jobs before a given time limit. 

Since this problem is not NP-hard, a linear-lime algorithm was 

proposed. Nong et al. [17] considered agents having their own jobs 

and competing for a single machine. The first agent minimizes the 

maximum weighted completion time, while the second minimizes 

the total weighted completion time. Due to the NP-hardness, a 

polynomial-time algorithm was proposed for providing a near- 

optimal schedule. Wu et al . [18] considered the learning effect in 

a single-machine two-agent scheduling problem. The first agent 

minimizes the total tardiness, and the second demands zero 

tardiness. A branch-and-bound (B&B) algorithm was proposed for 

scheduling jobs on a single machine. Lee et al. [19] considered 

a single-machine two-agent scheduling problem. The first agent 

minimizes a linear combination of the total completion time and 

the maximum tardiness given that no tardy jobs are allowed for 

the second agent. They developed another B&B algorithm for the 

single-machine scheduling problem. 

However, Pinedo [20] indicated that multi-machine scheduling 

is important. First, in reality, few real-world applications involve 

jobs done by a single machine. Second, in theory, the combina- 

tion of each locally optimal schedule for a single machine does not 

mean a globally optimal schedule. Therefore, two-agent scheduling 

on parallel machines merits further study. 

In light of the above observations, it is necessary to develop 

a new optimization algorithm for scheduling jobs from multi- 

ple agents on multiple machines. Though many algorithms are 

available, the existing algorithms cannot always achieve optimal- 

ity when the problem size is small. For example, the genetic algo- 

rithm in [21] only provides near-optimal solutions because of the 

nature of random walk. Moreover, past research cannot overcome 

both multi-machine and multi-agent issues at the same time. For 

example, the B&B algorithm in [18] was developed only for its ded- 

icated single-machine problem. In addition, we cannot apply some 

B&B algorithms dedicated to single-machine scheduling, such as 

[19] , to our problem. Therefore, a new B&B algorithm is needed. 

In this paper, a parallel-machine two-agent scheduling prob- 

lem is investigated. The objective is to minimize the total weighted 

completion time of the jobs from agent 1 given that the maximum 

completion time of the jobs from agent 2 cannot exceed a pre- 

defined limit. To ensure optimality, a new B&B algorithm is pro- 

posed for small problem instances. Moreover, this B&B algorithm 

also helps us to evaluate the performance of a genetic algorithm 

that is designed for generating approximate schedules. Experimen- 

tal results show that the two complementary algorithms perform 

well when the problem size is less than 200. 

The rest of the paper is organized as follows. The proposed 

problem is described in Section 2 . In Section 3 , a branch-and- 

bound (B&B) algorithm with several dominance properties and a 

lower bound is developed. In Section 4 , a simple genetic algorithm 

(GA) is proposed to provide an initial schedule for the B&B algo- 

rithm. In Section 5 , computational experiments are conducted. The 

conclusions are drawn in Section 6 . 

2. Problem definition 

All the parameters used in this section are listed in Table 2.1 . 

There are n jobs from two agents to be allocated to m identical 

machines. Note that we have n 1 jobs from agent 1 and n 2 jobs 

from agent 2, i.e., n 1 + n 2 = n . For each job j , the processing time, 

weight, and agent number are denoted by p j , w j , and I j , respec- 

tively. For a schedule S , let C 1 
j 
(S) be the completion time of job 

j ∈ AG 1 and C 2 max (S) = max { C 2 
j 
(S) } be the maximum completion 

time of jobs in AG 2 . The objective is to minimize 
∑ 

w j C 
1 
j 

subject 

Table 2.1 

The parameters used in this section. 

Parameter Description 

n The number of jobs 

m The number of machines 

S A schedule 

M k Machine k 

p j The processing time of job j 

w j The weight of job j 

C j ( S ) The completion time of job j in schedule S 

ag i Agent i 

AG i The set of jobs from ag i 
n i The number of jobs in AG i 
F A constant limit for C j∈ A G 2 (S) 

a The coefficient of F 

I j I j = 1 if j ∈ AG 1 ; I j = 2 if j ∈ AG 2 

Table 2.2 

A problem instance. 

Parameter Value 

j 1 2 3 4 5 6 7 

I j 1 1 1 1 2 2 2 

p j 2 2 5 4 1 2 3 

w j 6 2 3 2 

C j ( S ) 2 2 10 9 4 5 5 

k 1 2 2 1 2 2 1 

to C 2 max ≤ aF , where a is a coefficient. In general, we set a = 1 . That 

is, the problem can be denoted by P m 

| C 2 max ≤ aF | ∑ 

w j C 
1 
j 
. 

An example is shown in Table 2.2 and Fig. 2.1 . Moreover, 

we have n = 7 , m = 2 , a = 1 , and F = 5 . Consider a schedule S = 

(1 , 7 , 4 | 2 , 5 , 6 , 3) , where the vertical bar means a separator divid- 

ing jobs among machines. It is easy to check C 2 max ≤ 5 and obtain 

the objective cost, i.e., 
∑ 

w j C 
1 
j 

= 6 · 2 + 2 · 2 + 3 · 10 + 2 · 9 = 64 . To 

meet the requirement of F , jobs from ag 2 are scheduled first and 

thus result in fragments, such as [0, 2] on M 1 . In this instance, the 

remaining jobs from ag 1 perfectly utilize the fragments on the two 

machines. However, for other larger instances, to determine such 

optimal permutations requires many trials and errors. It is time- 

consuming, no matter what optimization algorithms we use. For 

more information about designing optimization algorithms, please 

refer to B&B for multiple agents [19,22,23] or B&B for multiple ma- 

chines [24,25] . 

3. Branch-and-bound algorithm 

In this section, some dominance properties are developed and 

a lower bound is proposed. With these properties, a branch-and- 

bound (B&B) algorithm is developed. For a path in the search tree 

(i.e., schedule), the nodes are visited in a depth-first-search (DFS) 

manner. 

3.1. Dominance properties 

Assume that S and S ′ are two schedules and that S ′ is obtained 

by interchanging two pairwise jobs (i.e., i and j ) in S . Then we 

have S = (α, i, j, β) and S ′ = (α, j, i, β) , where α is a partial de- 

termined sequence and β is a partial undetermined sequence. Let 

M k be the current machine, J k be the set of jobs allocated to M k , 

and t = max { C j∈ α∩ J k (S) } = max { C j∈ α∩ J k (S ′ ) } . Then we have C i (S) = 

t + p i , C j (S) = t + p i + p j , C j (S ′ ) = t + p j , and C i (S ′ ) = t + p i + p j . 

The dominance properties are listed below. Since their proofs are 

similar, only the proof of the first dominance rule is given below. 

Property 1. If i ∈ AG 1 , j ∈ AG 2 , and t + p i + p j ≤ F , then S ′ is dom- 

inated. 
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