
Knowledge-Based Systems 105 (2016) 68–82

Contents lists available at ScienceDirect

Knowle dge-Base d Systems

journal homepage: www.elsevier.com/locate/knosys

A branch-and-bound algorithm for minimizing the total weighted

completion time on parallel identical machines with two competing

agents

Wen-Chiung Lee

a , Jen-Ya Wang

b , ∗, Mei-Chun Lin

a

a Department of Statistics, Feng Chia University, Taichung, Taiwan, ROC
b Department of Computer Science and Information Management, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302,

Taiwan, ROC

a r t i c l e i n f o

Article history:

Received 15 August 2015

Revised 22 April 2016

Accepted 7 May 2016

Available online 10 May 2016

Keywords:

Discrete optimization

Branch-and-bound algorithm

Two-agent scheduling

Multi-machine scheduling

Lower bound

a b s t r a c t

Scheduling with two competing agents has drawn a lot of attention lately. However, most studies fo-

cused only on single-machine problems. In reality, there are many machines or assembly lines to process

jobs. This study explores a parallel-machine scheduling problem. The objective is to minimize the total

weighted completion time of jobs from agent 1 given a bound of the maximum completion time of jobs

from agent 2. We develop a branch-and-bound algorithm to solve the problems with fewer jobs. In addi-

tion, we propose genetic algorithms to obtain the approximate solutions. Computational results are given

to evaluate the performance of the proposed algorithms.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

To survive today’s intense competition and meet challenges

that develop rapidly, industries must reduce cost, shorten waiting

times, maximize profits, and give satisfaction. To achieve the above

goals, many industries use parallel-machine production. Some is-

sues with this type of production need to be managed. For exam-

ple, the orders may not come from a sole source. Some orders need

to be completed as soon as possible, and some do not, or some or-

ders are of different importance and incur different penalties for

late completion. In light of these observations, jobs having various

time priorities need to be carefully scheduled on parallel machines.

An example of a tea shop is given as follows. Several servers

deal with daily orders. Some bulk orders may be placed a week

ahead of time via online shopping, and some orders are placed ver-

bally in front of a brick-and-mortar bar. Some orders may involve

an important international conference, and heavy tardiness fines

may be imposed for these orders. Meanwhile, the face-to-face cus-

tomers should not be kept waiting for a long time. Clearly, tradi-

tional FCFS (First Come First Serve) rules are not good approaches

to this type of production.

∗ Corresponding author. Fax: + 886 4 26521921.

E-mail address: jywang@sunrise.hk.edu.tw (J.-Y. Wang).

Multi-agent scheduling is a new concept that can be applied

to many fields. The concept was first introduced in [1,2] . Baker

and Smith [1] introduced a real-world instance commonly seen

in R&D and production departments. An R&D department is con-

cerned about meeting deadlines, but a production department is

more concerned about a short response time. Agnetis et al. [2] con-

sidered some two-agent problems. Each agent deals with a set of

non-preemptive jobs and wants to minimize a certain objective

function, e.g., number of tardy jobs or total weighted completion

time. Wan et al. [3] provided an example in which jobs are divided

into two parts: regular jobs and maintenance activities. Meiners

et al . [4] showed an example in the field of telecommunication. To

improve network efficiency, they viewed a packet as two distinct

sets of jobs: deadline jobs, which represent real-time packets in a

network, and flow jobs, which represent other packets in the net-

work. Leung et al. [5] discussed some two-agent scheduling prob-

lems and developed several mathematical properties. Each of the

researchers above proposed a novel mathematical model, but nei-

ther provided experimental analyses. For more research into multi-

agent scheduling problems, please refer to [6–14] .

Most two-agent scheduling problems are focused on single-

machine scheduling. Liu et al. [15] considered the processing time

of a job as an increasing linear function of its starting time. Two

agents compete to perform their respective jobs on a common

single machine, and each agent has its own criterion to optimize.

Mor and Mosheiov [16] investigated batch scheduling on a single

http://dx.doi.org/10.1016/j.knosys.2016.05.012

0950-7051/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2016.05.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.05.012&domain=pdf
mailto:jywang@sunrise.hk.edu.tw
http://dx.doi.org/10.1016/j.knosys.2016.05.012

W.-C. Lee et al. / Knowledge-Based Systems 105 (2016) 68–82 69

machine. One agent minimizes the total completion time, and

the other must complete all its jobs before a given time limit.

Since this problem is not NP-hard, a linear-lime algorithm was

proposed. Nong et al. [17] considered agents having their own jobs

and competing for a single machine. The first agent minimizes the

maximum weighted completion time, while the second minimizes

the total weighted completion time. Due to the NP-hardness, a

polynomial-time algorithm was proposed for providing a near-

optimal schedule. Wu et al . [18] considered the learning effect in

a single-machine two-agent scheduling problem. The first agent

minimizes the total tardiness, and the second demands zero

tardiness. A branch-and-bound (B&B) algorithm was proposed for

scheduling jobs on a single machine. Lee et al. [19] considered

a single-machine two-agent scheduling problem. The first agent

minimizes a linear combination of the total completion time and

the maximum tardiness given that no tardy jobs are allowed for

the second agent. They developed another B&B algorithm for the

single-machine scheduling problem.

However, Pinedo [20] indicated that multi-machine scheduling

is important. First, in reality, few real-world applications involve

jobs done by a single machine. Second, in theory, the combina-

tion of each locally optimal schedule for a single machine does not

mean a globally optimal schedule. Therefore, two-agent scheduling

on parallel machines merits further study.

In light of the above observations, it is necessary to develop

a new optimization algorithm for scheduling jobs from multi-

ple agents on multiple machines. Though many algorithms are

available, the existing algorithms cannot always achieve optimal-

ity when the problem size is small. For example, the genetic algo-

rithm in [21] only provides near-optimal solutions because of the

nature of random walk. Moreover, past research cannot overcome

both multi-machine and multi-agent issues at the same time. For

example, the B&B algorithm in [18] was developed only for its ded-

icated single-machine problem. In addition, we cannot apply some

B&B algorithms dedicated to single-machine scheduling, such as

[19] , to our problem. Therefore, a new B&B algorithm is needed.

In this paper, a parallel-machine two-agent scheduling prob-

lem is investigated. The objective is to minimize the total weighted

completion time of the jobs from agent 1 given that the maximum

completion time of the jobs from agent 2 cannot exceed a pre-

defined limit. To ensure optimality, a new B&B algorithm is pro-

posed for small problem instances. Moreover, this B&B algorithm

also helps us to evaluate the performance of a genetic algorithm

that is designed for generating approximate schedules. Experimen-

tal results show that the two complementary algorithms perform

well when the problem size is less than 200.

The rest of the paper is organized as follows. The proposed

problem is described in Section 2 . In Section 3 , a branch-and-

bound (B&B) algorithm with several dominance properties and a

lower bound is developed. In Section 4 , a simple genetic algorithm

(GA) is proposed to provide an initial schedule for the B&B algo-

rithm. In Section 5 , computational experiments are conducted. The

conclusions are drawn in Section 6 .

2. Problem definition

All the parameters used in this section are listed in Table 2.1 .

There are n jobs from two agents to be allocated to m identical

machines. Note that we have n 1 jobs from agent 1 and n 2 jobs

from agent 2, i.e., n 1 + n 2 = n . For each job j , the processing time,

weight, and agent number are denoted by p j , w j , and I j , respec-

tively. For a schedule S , let C 1
j
(S) be the completion time of job

j ∈ AG 1 and C 2 max (S) = max { C 2
j
(S) } be the maximum completion

time of jobs in AG 2 . The objective is to minimize
∑

w j C
1
j

subject

Table 2.1

The parameters used in this section.

Parameter Description

n The number of jobs

m The number of machines

S A schedule

M k Machine k

p j The processing time of job j

w j The weight of job j

C j (S) The completion time of job j in schedule S

ag i Agent i

AG i The set of jobs from ag i
n i The number of jobs in AG i
F A constant limit for C j∈ A G 2 (S)

a The coefficient of F

I j I j = 1 if j ∈ AG 1 ; I j = 2 if j ∈ AG 2

Table 2.2

A problem instance.

Parameter Value

j 1 2 3 4 5 6 7

I j 1 1 1 1 2 2 2

p j 2 2 5 4 1 2 3

w j 6 2 3 2

C j (S) 2 2 10 9 4 5 5

k 1 2 2 1 2 2 1

to C 2 max ≤ aF , where a is a coefficient. In general, we set a = 1 . That

is, the problem can be denoted by P m

| C 2 max ≤ aF | ∑

w j C
1
j
.

An example is shown in Table 2.2 and Fig. 2.1 . Moreover,

we have n = 7 , m = 2 , a = 1 , and F = 5 . Consider a schedule S =

(1 , 7 , 4 | 2 , 5 , 6 , 3) , where the vertical bar means a separator divid-

ing jobs among machines. It is easy to check C 2 max ≤ 5 and obtain

the objective cost, i.e.,
∑

w j C
1
j

= 6 · 2 + 2 · 2 + 3 · 10 + 2 · 9 = 64 . To

meet the requirement of F , jobs from ag 2 are scheduled first and

thus result in fragments, such as [0, 2] on M 1 . In this instance, the

remaining jobs from ag 1 perfectly utilize the fragments on the two

machines. However, for other larger instances, to determine such

optimal permutations requires many trials and errors. It is time-

consuming, no matter what optimization algorithms we use. For

more information about designing optimization algorithms, please

refer to B&B for multiple agents [19,22,23] or B&B for multiple ma-

chines [24,25] .

3. Branch-and-bound algorithm

In this section, some dominance properties are developed and

a lower bound is proposed. With these properties, a branch-and-

bound (B&B) algorithm is developed. For a path in the search tree

(i.e., schedule), the nodes are visited in a depth-first-search (DFS)

manner.

3.1. Dominance properties

Assume that S and S ′ are two schedules and that S ′ is obtained

by interchanging two pairwise jobs (i.e., i and j) in S . Then we

have S = (α, i, j, β) and S ′ = (α, j, i, β) , where α is a partial de-

termined sequence and β is a partial undetermined sequence. Let

M k be the current machine, J k be the set of jobs allocated to M k ,

and t = max { C j∈ α∩ J k (S) } = max { C j∈ α∩ J k (S ′) } . Then we have C i (S) =

t + p i , C j (S) = t + p i + p j , C j (S ′) = t + p j , and C i (S ′) = t + p i + p j .

The dominance properties are listed below. Since their proofs are

similar, only the proof of the first dominance rule is given below.

Property 1. If i ∈ AG 1 , j ∈ AG 2 , and t + p i + p j ≤ F , then S ′ is dom-

inated.

Download English Version:

https://daneshyari.com/en/article/402112

Download Persian Version:

https://daneshyari.com/article/402112

Daneshyari.com

https://daneshyari.com/en/article/402112
https://daneshyari.com/article/402112
https://daneshyari.com

