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a b s t r a c t 

This paper covers a particular area of interest in pattern recognition and knowledge-based systems 

(PRKbS), being intended for both young researchers and academic professionals who are looking for a pol- 

ished and refined material. Its aim, playing the role of a tutorial that introduces three feature extraction 

(FE) approaches based on zero-crossing rates (ZCRs), is to offer cutting-edge algorithms in which clarity 

and creativity are predominant. The theory, smoothly shown and accompanied by numerical examples, 

innovatively characterises ZCRs as being neurocomputing agents. Source-codes in C/C++ programming 

language and interesting applications on speech segmentation, image border extraction and biomedical 

signal analysis complement the text. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

1.1. Objective and tutorial structure 

In a previous work, I published a tutorial on signal energy and 

its applications [1] , introducing alternative and innovative digital 

signal processing (DSP) algorithms designed for feature extraction 

(FE) [2–4] in pattern recognition and knowledge-based systems 

(PRKbS) [5,6] . At that time, I intended to cover the lack of novelty 

in related approaches based on consistency among creativity, sim- 

plicity and accuracy . So it is presently, opportunity in which three 

methods for FE from unidimensional (1D) and bidimensional (2D) 

data are defined, explained and exemplified, pursuing and taking 

advantage of my own three previous formulations [1] . The dif- 

ferences between that and this work are related to the concepts 

and their corresponding physical meanings adopted to substanti- 

ate them: antecedently, signal energy was used to provide infor- 

mation on workload, on the other hand, zero-crossing rates (ZCRs) 

are currently handled to retrieve spectral behaviour [7] of signals. 

Complementarily, ZCRs are interpreted as being neurocomputing 

agents, which characterises an innovation that this work offers to 

the scientific community. Another remarkable contribution consists 

of the use of ZCRs for 2D signal processing and pattern recognition, 

a concept practically inexistent up to date. 
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As in the previous, this essay suggests possible future trends for 

the PRKbS community. In doing so, it is organised as follows. The 

concept of ZCRs and some recent related work pertaining to these 

constitute the next subsections of these introductory notes. Then, 

Section 2 presents the proposed algorithms for FE, their corre- 

sponding implementations in C/C++ programming language [8] and 

my particular point-of-view which characterises ZCRs as being 

neurocomputing agents. Moving forward, Section 3 shows numeri- 

cal examples and Section 4 describes the tests and results obtained 

during the analyses of both 1D and 2D data. Lastly, Section 5 re- 

ports the conclusions that are followed by the references. 

Throughout this document, detailed descriptions, graphics, ta- 

bles and algorithms are abundant, however, for a much better un- 

derstanding, I strongly encourage you, the reader of this tutorial, 

to learn my previous text [1] before proceeding any further. 

1.2. A review on ZCRs and their applications 

Although its roots were traced back before [9] and throughout 

[10,11] the beginning of DSP, the suitability of ZCRs has been inten- 

sively pointed out by the speech processing community, the one in 

which their applications are more frequent [12] . Thus, ZCRs, as be- 

ing the simplest existing tools used to extract basic spectral infor- 

mation from time-domain signals without their explicit conversion 

to the frequency-domain [13] , play an important role in DSP and 

PRKbS. 

Despite the word rate in its name, ZCR is defined, in its ele- 

mentary form, as being the number of times a signal waveform 
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Fig. 1. The example signal s [ ·] = {−2 , 3 , −5 , 4 , 2 , 3 , −5 } and its four zero-crossings represented as red square dots. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article). 

Fig. 2. In blue, the pure sine wave; in red, the composed sine wave; in brown, the square wave. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article). 

crosses the amplitude zero. An alternative and formal manner to 

express this concept, letting s [ ·] = { s 0 , s 1 , s 2 , ..., s M−1 } be a discrete- 

time signal of length M > 1, is 

ZCR (s [ ·]) = 

1 

2 

M−2 ∑ 

j=0 

| sign (s j ) − sign (s j+1 ) | , (1) 

being ZCR ( s [ ·]) ≥ 0 for any s [ ·] and sign (x ) = 

{ 

1 if x � 0 ;
−1 otherwise 

. In the 

next section, distinct normalisation procedures will be applied to 

ZCRs in order for the word rate to make the intended sense. 

As an example, let s [ ·], of size M = 7 , be the discrete-time 

signal for which the samples are {−2 , 3 , −5 , 4 , 2 , 3 , −5 } . Then, 

ZCR( s [ ·]) = 

1 
2 

∑ M−2 
j=0 | sign (s j ) − sign (s j+1 ) | = 

1 
2 

∑ 5 
j=0 | sign (s j ) −

sign (s j+1 ) | = 

1 
2 (| − 1 − 1 | + | 1 − (−1) | + | − 1 − 1 | + | 1 − 1 | + 

| 1 − 1 | + | 1 − (−1) | ) = 

1 
2 (| − 2 | + | 2 | + | − 2 | + | 0 | + | 0 | + | 2 | ) = 

1 
2 (2 + 2 + 2 + 0 + 0 + 2) = 4 , i.e., the waveform of s [ ·] crosses its 

amplitude axis four times at the value 0, as can be easily seen in 

Fig. 1 . 

The elementary example I have just described is really quite 

simple, however, I ask for your attention in order to figure out 

the correct physical meaning of ZCRs, avoiding underestimations. 

For that, a basic input drawn from Fourier’s theory and his mathe- 

matical series [14] is required: the statement which confirms that 

any signal waveform distinct of the sinusoidal can be decomposed 

as an infinite linear combination of sinusoids with multiple fre- 

quencies, called harmonics . Thus, a signal waveform that matches 

exactly a sinusoidal function, with a certain period, phase and am- 

plitude, is classified as being pure . Conversely, any other type of 

signal waveform consists of a main sinusoid called fundamental or 

first harmonic , owning the lowest frequency among the set, added 

together with the other sinusoids of higher frequencies, i.e., the 

second harmonic, the third harmonic, the fourth harmonic, and so 

on, in a descending order of magnitude. 

The connection between ZCRs and Fourier’s series is now ex- 

plained on the basis of the following example, illustrated in Fig. 2 . 

In blue, red and brown, respectively, a pure sine wave, a composi- 

tion of two sine waves and a square wave that is essentially the 

sum of infinite sinusoids, are shown, all with the same length. 

Interestingly, the three curves have exactly the same number of 

ZCRs, however, according to Fourier’s theory, their frequency con- 

tents are considerably different. Based on the example, the learnt 

lesson is: the first harmonics of a non pure signal are dominant 

over the others, whilst mandatory to define its general waveform 

shape. Consequently, it is often the minor oscillations produced by 

the higher harmonics that do not generate zero-crossings. There- 

fore, the ZCR of a given signal is much more likely to provide in- 

formation on its fundamental frequency than a detailed description 

of its complete frequency content. 

Another relevant concept is the direct relationship between the 

fundamental frequency of a signal and its ZCR. Since sinusoids are 

periodic in 2 π , each period contains two zero-crossings, as shown 

in Fig. 3 . Thus, if a 1D signal s [ ·] of length M crosses G times the 

amplitude zero, it contains G 
2 sinusoidal periods at that frequency. 

Considering that, at the time the signal was converted from its 

analog to its digital version [14] , the sampling rate was R sam- 

ples per second, then 

1 
R is the period of time between consecutive 

samples, entailing that M · 1 
R = 

M 

R is the time extension of the ana- 

log signal in seconds. Concluding, in 

M 

R seconds there are G 
2 sinu- 

soidal periods, implying that, proportionally, there are G ·R 
2 ·M 

periods 

per second, i.e., the frequency, F , caught by the ZCRs is 

F (ZCR ( f [ ·])) = 

G · R 

2 · M 

Hz. (2) 

Obviously, the previous formulation is only valid if the sinu- 

soids are not shifted on the amplitude axis, i.e., no constant value 

is added to them. Equivalently, the signal under analysis is required 

to have its arithmetic mean equal zero, implying that an initial ad- 

justment may be necessary prior to counting the ZCRs, otherwise 

they would not be physically meaningful. The simplest process to 

normalise a signal s [ ·] in order to turn its mean to zero is to shift 

each one of its samples, subtracting its original mean, i.e., 

s k ← s k −
(∑ M−1 

j=0 s j 
)

M 

, (0 � k � M − 1) . (3) 

In order to illustrate the concepts I have just exposed, the 

readers are requested to consider the signal s [ ·] = { 12 
10 , 3 , 

12 
10 , 3 , 

12 
10 , 3 , 

12 
10 , 3 , 

12 
10 } , of length M = 9 , that was sampled at 36 sam- 

ples per second and is illustrated in Fig. 4 . Its arithmetic mean 

is 
12 
10 

+3+ 12 
10 

+3+ 12 
10 

+3+ 12 
10 

+3+ 12 
10 

9 = 2 � = 0 , i.e., the normalisation de- 

fined in Eq. (3) must be applied before the ZCRs are counted. 

Thus, s [ ·] becomes { 12 
10 − 2 , 3 − 2 , 12 

10 − 2 , 3 − 2 , 12 
10 − 2 , 3 − 2 , 12 

10 −
2 , 3 − 2 , 12 

10 − 2 } = {− 8 
10 , 1 , − 8 

10 , 1 , − 8 
10 , 1 , − 8 

10 , 1 , − 8 
10 } , which has 

its mean equal zero and is also shown in Fig. 4 . ZCRs are now 

ready to be counted, according to Eq. (1) , resulting in G = 8 zero- 
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