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a b s t r a c t

The single objective quadratic multiple knapsack problem (QMKP) is a useful model to formulate a num-

ber of practical problems. However, it is not suitable for situations where more than one objective needs

to be considered. In this paper, we extend the single objective QMKP to the bi-objective case such that

we simultaneously maximize the total profit of the items packed into the knapsacks and the ’makespan’

(the gain of the least profit knapsack). Given the imposing computational challenge, we propose a hybrid

two-stage (HTS) algorithm to approximate the Pareto front of the bi-objective QMKP. HTS combines two

different and complementary search methods — scalarizing memetic search (first stage) and Pareto local

search (second stage). Experimental assessments on a set of 60 problem instances show that HTS domi-

nates a standard multi-objective evolutionary algorithm (NSGA II), and two simplified variants of HTS. We

also present a comparison with two state-of-the-art algorithms for the single objective QMKP to assess

the quality of the extreme solutions of the approximated Pareto front.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of weight capacity-constrained knapsacks and a set

of objects (or items), each object is associated with a weight, an

individual profit and a paired profit with any other object. The

quadratic multiple knapsack problem (QMKP) aims to determine a

maximum profit assignment (packing plan) of objects to the knap-

sacks subject to their capacity constraints [14]. The profit of a pair

is accumulated in the sum only if the two corresponding objects

are allocated to the same knapsack.

The QMKP generalizes two well-known knapsack problems, i.e.,

the quadratic knapsack problem (QKP) [28] and the multiple knap-

sack problem (MKP) [26]. The QMKP is also related to the so-called

discounted 0–1 knapsack problem (DKP) [30]. The DKP is to select

items from a set of groups where each group includes three items

and at most one of the three items can be selected. For each group,

the profit of the third item is a discounted profit which is defined

by the interaction of the first two items. This problem remains lin-

ear and finds applications in investment. The QMKP has important

applications where resources with different levels of interaction

have to be distributed among different tasks [14,31]. A first exam-

ple involves allocating staff in a company to a set of groups where
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group member contributions are calculated both individually and

in pairs; another example concerns an investment scenario where

the knapsacks represent the bounded budgets and the paired val-

ues indicate the impact on expected financial performances when

different investment options are chosen together.

The QMKP is computational challenging since it generalizes the

NP-hard QKP [28]. To solve such problems, exact and heuristic al-

gorithms constitute two main and complementary solution meth-

ods in the literature. Exact algorithms have the theoretical advan-

tage of guaranteeing the optimality of the solutions found. How-

ever given the intrinsic difficulty of NP-hard problems, the com-

puting time needed to find the optimal solution by an exact al-

gorithm may become prohibitive for large instances. For instance,

for the QKP, the most powerful exact algorithm can only deal

with instances with no more than 1500 items [29] and typically

requires considerable computing time. For the more complicated

QMKP, no exact algorithm has been published in the literature to

the best of our knowledge. On the other hand, heuristic algorithms

aim to find satisfactory sub-optimal solutions (to large problem in-

stances) in acceptable computing time, but without provable qual-

ity guarantee of the attained solutions. This approach is particu-

larly useful when it is difficult or impossible to obtain an optimal

solution. Within the context of approximating the difficult QMKP,

several heuristic algorithms have been reported in the literature.

Representative heuristic algorithms include population-based al-

gorithms, such as genetic algorithms [14,31], memetic algorithm

http://dx.doi.org/10.1016/j.knosys.2016.01.014

0950-7051/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2016.01.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.01.014&domain=pdf
mailto:yuning@info.univ-angers.fr
mailto:hao@info.univ-angers.fr
mailto:jin-kao.hao@univ-angers.fr
http://dx.doi.org/10.1016/j.knosys.2016.01.014


90 Y. Chen, J.-K. Hao / Knowledge-Based Systems 97 (2016) 89–100

[32], artificial bee colony algorithm [33] and evolutionary path re-

linking algorithm [8]. Besides, neighborhood search and construc-

tive/destructive search approaches represent another class of ef-

fective tools for the QMKP; typical examples include hill-climbing

[14], tabu-enhanced iterated greedy search [13], strategic oscilla-

tion [12] and iterated responsive threshold search (IRTS) [7]. Fi-

nally, note that exact and heuristic approaches complement each

other and are useful for problem solving in different settings. They

can even be combined to create powerful hybrid algorithms.

The QMKP is a useful model to formulate a number of practical

problems [14,31]. Still it is not suitable for situations where more

than one objective needs to be simultaneously considered. Con-

sider the following staff assignment problem for instance. When

company managers allocate staff to form a set of groups respon-

sible for different products, they may not only consider the to-

tal strength of all groups, but also the balance among the groups

for the sake of fairness and sustainable development. For instance,

when several groups work on different products destined to dif-

ferent types of customers, in order to pursue a long-term profit,

company managers may want to balance the strength of each

group when allocating the group members, such that each group

has enough capability to ensure a high-quality of its products for

the purpose of well satisfying its customers in the long term. In

portfolio investments, an investor may be interested not only by

maximizing the total return of the invested asset mix, but also by

ensuring an expected return of the least profit asset. In these set-

tings, one faces a bi-objective version of the QMKP, in which both

the total profit of the packing plan and the gain of the least profit

knapsack (corresponding to the makespan in scheduling theory)

are to be maximized simultaneously (see Section 2 for the formal

definition). To conveniently formulate this type of problems, this

work extends the single objective QMKP to the bi-objective QMKP

(BO-QMKP). Apart from the aforementioned application scenarios,

the BO-QMKP model could find in the future additional applica-

tions in other settings where it can be used to formulate either

a whole problem or a subproblem. One notices that some well-

known knapsack problems and more generally other optimization

problems have already a bi-objective or multi-objective counter-

part, like the bi-objective 0–1 knapsack problem [10], the multi-

objective multidimensional knapsack problem [4], the bi-objective

unconstrained binary quadratic programming problem [21], the

bi-objective flow-shop scheduling problems [17], the bi-objective

traveling salesman problem [20], the multi-objective set cover-

ing problem [15] and the bi-objective capacity planning problem

[36]. The BO-QMKP introduced in this work enriches these multi-

objective modeling tools and enlarges the class of practical prob-

lems that can be formulated.

On the other hand, solving the BO-QMKP model represents an

imposing computational challenge in the general case since it gen-

eralizes the computationally difficult QMKP model. For this reason,

we focuses on elaborating a heuristic algorithm to approximate the

Paretofront of the BO-QMKP. The proposed hybrid two-stage (HTS)

algorithm is based on the general two-stage approach combining

two fundamentally different and complementary search strategies,

namely the scalarizing approach (first stage) and the Pareto-based

approach (second stage). Such a hybrid framework has been suc-

cessfully applied to solve a number of challenging multi-objective

problems such as the bi-objective flow-shop scheduling problems

[17], the multi-objective traveling salesman problem [20] and the

bi-objective unconstrained binary quadratic programming problem

[22]. In this work, we adapt this general two-stage approach to

solve our BO-QMKP model and develop dedicated search proce-

dures for each stage of the proposed algorithm. In particular, we

devise a population-based scalarizing memetic search method to

effectively solve the scalarizing subproblems in the first stage and

a double-neighborhood Pareto local search procedure to further the

approximation set in the second stage. By combining complemen-

tary search strategies in the two search stages and using dedi-

cated techniques in each stage, the HTS algorithm aims to push

the approximation set towards the Pareto front on the one hand

and ensure a well-distributed approximation set on the other hand.

Thanks to these desirable features, the proposed HTS algorithm

proves to be able to attain high quality approximations as shown

in Section 4.

The main contributions of this work can be summarized as

follows.

• We introduce for the first time the bi-objective quadratic mul-

tiple knapsack model whose formal definition is provided in

Section 2.

• We provide a detailed description of our hybrid two-stage ap-

proach which aims to provide high quality approximation of the

Pareto front for the proposed BO-QMKP model (Section 3). We

show how HTS makes an original combination of an elitist evo-

lutionary multi-objective optimization algorithm with a state-

of-the-art single-objective responsive threshold search proce-

dure for its first stage while adopting an effective Pareto-based

local search procedure for the second stage.

• We show experimental studies on a set of 60 benchmark in-

stances to assess the effectiveness of the proposed HTS algo-

rithm (Section 4). In particular, our experiments demonstrate

that HTS dominates a conventional non-dominated sorting ge-

netic algorithm (NSGA II) and two simplified variants of the

HTS algorithm.

2. The bi-objective quadratic multiple knapsack problem

In this section, we introduce formally the BO-QMKP model.

Given a set of objects (or items) N = {1, 2, ..., n} and a set of

capacity-constrained knapsacks M = {1, 2, ..., m}. Each object i (i ∈
N) is associated with a profit pi and a weight wi. Each pair of ob-

jects i and j (1 ≤ i �= j ≤ n) is associated with a joint profit pij. Each

knapsack k (k ∈ M) has a weight capacity Ck. The BO-QMKP aims

to assign the n objects to the m knapsacks (some objects can re-

main unassigned) such that both the overall profit of the assigned

objects and the makespan (the gain of the least profit knapsack)

are maximized subject to the following two constraints:

• Each object i (i ∈ N) can be allocated to at most one knapsack;

• The total weight of the objects assigned to each knapsack k

(k ∈ M) cannot exceed its capacity Ck.

Given the above notations, a BO-QMKP solution can be rep-

resented as a set of groups S = {I0, I1, . . . , Im} where group Ik ⊂ N

(k ∈ M) represents the set of objects assigned to knapsack k and

group I0 contains all unassigned objects. Then the BO-QMKP can

be stated mathematically as follows:

max f1(S) =
∑
k∈M

∑
i∈Ik

pi +
∑
k∈M

∑
i, j∈Ik,i �= j

pi j (1)

max f2(S) = mink∈M

{∑
i∈Ik

pi +
∑

i, j∈Ik,i �= j

pi j

}
(2)

subject to:∑
i∈Ik

wi ≤ Ck,∀k ∈ M (3)

S ∈ {0, ..., m}n (4)

Eq. (1) aims to maximize the total profit of all assigned ob-

jects while Eq. (2) aims to maximize the gain of the least profit

knapsack (or makespan). Constraints (3) guarantees that the total
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