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a b s t r a c t

This paper discusses a joint problem of optimal project selection and scheduling in the situation where ini-

tial outlays and net cash inflows of projects are given by experts’ estimates due to lack of historical data.

Uncertain variables are used to describe these parameters and the use of them is justified. A new mean-

variance and a mean-semivariance models are proposed considering relationship and time sequence order

between projects. In order to solve the complex problems, the methods for calculating uncertain lower partial

semivariance and higher partial semivariance values are introduced and a hybrid intelligent algorithm which

integrates genetic algorithm with cellular automation is provided. In addition, two examples are presented to

illustrate the application and significance of the new models, and numerical experiments are done to show

the effectiveness of the proposed algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The original project selection refers to selecting an appropriate

combination of projects among available ones to obtain the maximal

total profit within budget limitation. A main contribution to the prob-

lem was made by Weingartner [38] who first introduced mathemati-

cal programming method into the field. Since then, a variety of mod-

els were developed to increase applicability of the proposed models

to the real life, as discussed by Dickinson et al. [5], Gutjahr et al. [11],

Liu and Wang [26], Padberg and Wilczak [31], Xiao et al. [39], etc.

These studies treated the project parameters as exact values, yet

it is usually difficult to get the exact numbers of them because of the

complexity of real world. Therefore, scholars studied the project se-

lection problem with imprecise project parameter values. Tradition-

ally, people employed probability theory to handle the problems. For

example, De et al. [4], Keown and Martin [18], Keown and Taylor [19]

initiated chance-constrained programming methods to deal with the

project selection problem with random inflows and outlays. Medaglia

et al. [29] put forward a new evolutionary method for solving linearly

constrained project selection problems. Shakhsi-Niaei et al. [34] em-

ployed Monte Carlo simulation to propose a two phases framework

for project selection problem under randomness and subject to real-

world constraints.

Although probability theory is powerful for handling indetermi-

nacy, its use is only suitable when people have sufficient historical
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data such that the probability distributions can be obtained. However,

there are situations in real life where there are scarce or no historical

data. This is especially true for the selection of R & D projects whose

initial costs of research and the incomes brought about by the new

products have no observed data and can only be estimated by the

experts. A great deal of evidence shows that people usually include a

wider range of values in their estimation of an indeterminant number

than it may really take. Then in that situation if we still employ prob-

ability theory to help make decisions, counterintuitive results may

appear. The examples can be found in Liu [24] and Zhang et al. [41].

Especially, Zhang et al. [41] shows that in this situation if we inappro-

priately used probability theory in project selection, a budget exceed-

ing event which is sure to happen would be judged the event that will

surely not happen. Considering that people will not take action for an

event that will never happen, this mistaken result may bring great

loss to the investors.

To deal with men’s estimates, scholars have studied employing

fuzzy set theory and have applied fuzzy set theory in different fields

[27,42]. To solve project selection problems, scholars have devel-

oped a variety of fuzzy models, eg., Bhattacharyya et al. [1], Huang

[12], Karsak and Kuzgunkaya [17], Tsao [36], Zhang et al. [43] etc.

These researches opened a new perspective for dealing with project

selection problems with parameters given by experts’ estimations.

However, recently it was found that paradoxes will occur if we use

fuzzy variables to describe the subjective estimations of project pa-

rameters [40,41]. In order to model human being’s imprecise esti-

mations toward indeterminant quantities, Liu [25] founded an un-

certainty theory based on four axioms and refined it in Liu [23].

If we use uncertainty theory to model human being’s imprecise
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estimations, no paradoxes appear. In fact, Liu [25] has shown that

human beings’ estimations expressed by belief degrees satisfy the

four axioms of the uncertainty theory, which implies that we can use

uncertainty theory to model human uncertainty. So far, uncertainty

theory has been used to handle many optimization problems con-

cerning human uncertainty. For example, Liu [21] proposed a spec-

trum of uncertain programming models and applied them to solve

machine scheduling, vehicle routing and project scheduling prob-

lems [23]. In 2010, Huang [13] first employed uncertainty theory to

propose a theory of uncertain portfolio selection. Based on the risk

measurement of variance, Zhang et al. [45] discussed two uncertain

portfolio selection models. Applications of uncertainty theory can

also be found in many other optimization fields, e.g., shortest path

problem [7], facility location problem [8], Chinese postman problem

[44], single-period inventory problem [32], uncertain aggregate pro-

duction planning problem [30], and multi-product newsboy problem

[6], etc. In the area of project selection, Zhang et al. [40] first applied

uncertainty theory to solve a multinational project selection prob-

lem. Zhang et al. [41] later proposed a profit risk index and a cost

overrun risk index and developed an uncertain mean-risk index do-

mestic project selection model. In this paper we will explore using

uncertainty theory to solve a joint problem of optimal project selec-

tion and scheduling with initial outlays and net cash inflows given

by experts’ estimates. Different from previous uncertain project se-

lection studies [40,41], in our problem, not only the projects need to

be selected, but also the start times of the selected projects need to

be scheduled to ensure effective use of budget. The logical relations

such as independent, dependent, exclusive, and time sequence order

among the candidate projects will be considered. The objective is to

get the maximum profit under the capital exceeding risk and profit

risk control. With an essential innovation, a new mean-variance and

mean-semivariance models for project selection and scheduling in

different situations will be developed. To solve the proposed complex

mixed integer programming problem, a hybrid intelligent algorithm

will be presented. The experimental test results will show that the al-

gorithm can improve the convergence speed and effectively solve the

problem.

The paper proceeds as follows. In Section 2 we will review some

fundamentals of uncertainty theory which will be used in the pa-

per. In Section 3 we will develop a mean-variance and a mean-

semivariance models for a project selection and scheduling problem

taking different interactions among candidate projects into account.

In Section 4 we will provide a hybrid intelligent algorithm for solving

the proposed problem. To illustrate the modeling idea and to show

the effectiveness of the proposed algorithm, we will present two nu-

merical examples and experiments in Section 5. Finally, in Section 6

we will give some concluding remarks.

2. Fundamentals of uncertainty theory

Uncertainty theory is developed based on the below four axioms.

Definition 1. Let L be a σ -algebra over a nonempty set �. Every el-

ement � ∈ L is called an event. If a set function M{�} satisfies the

following four axioms, we call it an uncertain measure [22,25]:

(i) (Normality) M{�} = 1.

(ii) (Duality) M{�} + M{�c} = 1.

(iii) (Subadditivity) For every countable sequence of events {�k},

we have

M

{
∞⋃

k=1

�k

}
≤

∞∑
k=1

M{�k}.

The triplet (�,L,M) is called an uncertainty space.

r
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Fig. 1. A zigzag uncertain variable ξ = Z(a, b, c, α).

(iv) (Product Axiom) Let (�k,Lk,Mk) be uncertainty spaces for k =
1, 2, . . . , The product uncertain measure is

M

{
∞∏

k=1

�k

}
=

∞∧
k=1

Mk{�k},

where �k are arbitrarily chosen events from Lk for k = 1, 2,

. . . , respectively.

Definition 2 [25]. An uncertain variable is a measurable function ξ
from an uncertainty space (�,L,M) to the set of real numbers.

It has been proved that for any events �1 ⊂�2, we have

M{�1} ≤ M{�2}.
In application, an uncertain variable is characterized by an uncer-

tainty distribution function which is defined as follows:

Definition 3 [25]. The uncertainty distribution �: � → [0, 1] of an

uncertain variable ξ is defined by

�(r) = M{ξ ≤ r}.
For example, if an uncertain variable has the following normal un-

certainty distribution, we call it a normal uncertain variable:

�(r) =
(

1 + exp

(
π(μ − r)√

3σ

))−1

, r ∈ �,

where μ and σ are real numbers and σ > 0. We denoted it in the

paper by ξ ∼ N (μ,σ ).

We call an uncertain variable a zigzag uncertain variable if it has

the following zigzag uncertain distribution (Please also see Fig. 1):

�(r) =

⎧⎪⎪⎨
⎪⎪⎩

0, if r ≤ a,

α(r − a)/(b − a), if a < r < b,

(r − b − αr + αc)/(c − b), if b ≤ r < c,

1, if r ≥ c,

where a, b, c and α are real numbers and a < b < c and α ∈ [0, 1]. The

variable is denoted in the paper by ξ ∼ Z(a, b, c, α).
When the uncertain variables ξ1, ξ2, . . . , ξn are represented by un-

certainty distributions, the operational law is given by Liu [23] as

follows:

Theorem 1 [23]. Let ξ1, ξ2, . . . , ξn be independent uncertain variables

with uncertainty distributions �1,�2, . . . ,�n. Let f (r1, r2, . . . , rn) be

strictly increasing with respect to r1, r2, . . . , rn. Then

ξ = f (ξ1, ξ2, . . . , ξn)

is an uncertain variable with inverse uncertainty distribution function

	−1(α) = f (�−1
1 (α),�−1

2 (α), . . . ,�−1
n (α)), 0 < α < 1. (1)

Theorem 2 [23]. Let ξ1, ξ2, . . . , ξn, ξn+1, . . . , ξn+m be independent

uncertain variables with uncertainty distributions �1,�2, . . . ,�n,

�n+1, . . . ,�n+m. Let g(r1, r2, . . . , rn, rn+1,. . . , rn+m) be strictly increas-

ing with respect to r1, r2, . . . , rn and strictly decreasing with respect to

rn+1, rn+2, . . . , rn+m. Then

η = g(ξ1, ξ2, . . . , ξn, ξn+1, . . . , ξn+m)
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