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a b s t r a c t

As a natural extension of three-way decisions with incomplete information, this paper provides a novel three-

way decision model based on incomplete information system. First, we define a new relation to describe the

similarity degree of incomplete information. Then, in view of the missing values presented in incomplete in-

formation system, we utilize interval number to acquire the loss function. A hybrid information table which

consist both of the incomplete information and loss function, is used to deal with the new three-way deci-

sion model. The key steps and algorithm for constructing the integrated three-way decision model are also

carefully investigated. An empirical study of medical diagnosis validates the reasonability and effectiveness

of our proposed model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Three-way decisions (TWD), which were proposed by Yao in 2010

[59,60], have gradually became an important granular computing

methodology and attracted many attentions in the nearly five years.

The idea of three-way decisions is generated from decision-theoretic

rough sets (DTRS) [66,68]. Intuitively, two thresholds α and β of DTRS

can divide the universe into three pairwise disjoint regions (posi-

tive, negative and boundary regions) by considering the minimum

expected overall decision risk. The positive decision rules generated

by the positive region make decision of acceptance. The negative de-

cision rules generated by the negative region make decision of rejec-

tion. With the different from the two-way decisions of acceptance

or rejection, the boundary region lead to a third way of decision,

namely, noncommitment or deferment [71]. For simplicity, the three

types of decision rules generated from the three regions of rough

sets, form three-way decisions. As we stated in [35], three-way deci-

sions are the natural extensions of DTRS, and they are common prob-

lem solving methodologies and consistent with human’s real decision

cognition.

In view of the semantics of DTRS, Yao systematically in-

vestigated the notion of three-way decisions and its potential
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applications recently [66,68]. As well, Liu et al. [28] briefly reviewed

the two decades’ researches on DTRS. Followed by their viewpoints,

the existing studies of DTRS in three-way decisions can divide into

three main aspects as follows.

• The extended models, modified models and their corresponding

approaches on three-way decisions

In order to introduce the general binary relations, Abd El-Monsef

and Kilany [1] constructed two new approximations (semilower and

semiupper approximations) and proposed a generalization and mod-

ification of DTRS model. Herbert and Yao, Azam and Yao [3,12,13]

systematically studied three-way decision-making in game-theoretic

rough sets. Li and Zhou [18] considered the decision risks in DTRS,

and further investigated the three-way decisions with optimistic

decision, equable decision, and pessimistic decision. Yao and Zhou

[67], Deng and Yao [6,7] utilized the Bayes theorem viewpoint and

information-theoretic viewpoint to interpret the thresholds acqui-

sition in probabilistic rough sets, respectively. Ma and Sun [38] ex-

tended the probabilistic rough set model to two universes by con-

sidering the Bayesian risk in decision making. In consideration of the

multiple classifications, the multi-agents and the multi-granulation

problems, Liu et al. [31] and Zhou [81] extended the three-way

decisions from two-category to multi-category; Yang et al. [56]

studied three-way decision-making with DTRS in the context of

multi-agent systems; Qian et al. [47] introduced multigranulation
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method to DTRS and proposed multigranulation decision-theoretic

rough sets. In consideration of the uncertainty decision environ-

ment in three-way decisions, Liu and Liang proposed a series of new

three-way decision models, including three-way decisions with ran-

dom sets [36], interval sets [24], linguistic assessment [27], fuzzy in-

terval sets [33], triangular fuzzy sets [23], intuitionistic fuzzy sets

[26], hesitant fuzzy sets [25], and they further proposed a three-

way decision model with logistic regression [35], dynamic three-

way decision model [34] and function based three-way decision

model [37]. Hu [14] systematically investigated three-way decision

spaces in rough sets. Salehi et al. [48] did the systematic map-

ping studies on granular computing. Ciucci and Dubois [4,5] dis-

cussed the dependencies among three-valued logics, and further

compared three-valued representations of imperfect information. Yu

et al. [72,73] and Lingras et al. [22] investigated the three-way deci-

sion approaches with clustering analysis. All the above stated work

make soiled contributions on the theoretical researches of three-way

decisions.

• Attribute reduction on three-way decisions

Attribute reduction in rough sets is one of the most important is-

sues, it provides an effective way to discover intrinsic knowledge hid-

den behind the data set by deleting the redundant information from

the information system [45]. In DTRS model, the attribute reduc-

tion methods mainly focus on two scenarios, positive region based

reduction and minimum cost based reduction. As to the first sce-

nario, Yao and Zhao [64] analyzed various criteria for attribute reduc-

tion for probabilistic rough sets, such as decision-monotocity, gen-

erality and cost. Li et al. [19] further investigated the monotonicity

of positive region in DTRS model, and presented a new definition

of attribute reduction in DTRS model. For the second scenario, Jia

et al. [15] discussed the minimum decision cost attribute reduction

in DTRS model and proposed cost-based optimal reducts. Min et al.

[41] proposed a test-cost-sensitive attribute reduction for rough set

model. Zhao and Zhu [75] proposed an optimal cost-sensitive granu-

larization method to address different sizes of the granule by consid-

ering variable test and misclassification costs. In addition, Ma et al.

[39] investigated a decision region distribution preservation reduc-

tion in DTRS model. Ju et al. [16] considered δ-cut DTRS and discussed

the attribute reductions of the new model. Zhang and Miao [79] dis-

cussed the region-based quantitative and hierarchical attribute re-

duction in the two-category decision theoretic rough set model. To

sum up, the researches on attribute reduction in DTRS can be easily

related to, and interpreted by, more practical notions such as costs,

losses and benefits.

• Different areas of application on three-way decisions

The essential ideas of three-way decisions have been widely ap-

plied in many fields, such as management decisions (e.g., environ-

mental management [10], government management [32], oil invest-

ment management [29,30,40,42,55,74], model selection [9]), infor-

mation and engineering (e.g., email spam filtering [76,80], E-learning

[2], products inspecting process [54]), medical management (e.g.,

medical clinic [43], medical decision support system [58]), three-way

recommender systems [77], etc.

As we stated above, the aforementioned literatures mainly con-

sider the complete information of three-way decisions. The loss

functions in their researches are directly given by the experts or

dealt with as imprecise values (e.g., random numbers, interval

numbers, fuzzy numbers, etc.), but the semantic relation between

loss functions and information table are rarely discussed. Further-

more, in real-life applications, since some data could not be ob-

tained for various reasons (e.g., capacity, technology, financing),

missing data appears frequently in many information systems. In

consideration of the information system with miss values, this paper

introduces the incomplete information into DTRS and analyzes three-

way decision approach based on the incomplete information system

(IIS).

The remainder of this paper is organized as follows. In Section 2,

we review some basic concepts of three-way decisions, DTRS, and

rough sets under IIS. In Section 3, a novel three-way decision model

with incomplete information is proposed. A hybrid information table,

which consists both of the incomplete information and loss function,

is used to deal with the three-way decision model in IIS. Then, a case

study of medical diagnosis is given to illustrate our method in Section

4. Section 5 concludes the paper and elaborates on future studies.

2. Preliminaries

The basic concepts, notations and results of rough sets [44–46,49–

51,78,82], DTRS [59–65] and three-way decisions [28,30,66,68–71]

are briefly reviewed in this section.

2.1. Three-way decisions in rough sets

The idea of three-way decisions in rough sets is generated by

rough set approximations [59,60]. As we know, Pawlak approxima-

tion space apr = (U , R) is defined by a finite and non-empty set U

and an equivalence relation R. A partition of U, which generated from

the equivalence relation R, can be denoted as [x]R or [x]. For ∀X ⊆ U ,

the lower and upper approximations of X can be defined as:

apr(X) = {x ∈ U|[x] ⊆ X};

apr(X) = {x ∈ U|[x] ∩ X �= ∅}.
(1)

In (1), the condition [x] ⊆ X in the lower approximation represents

[x] is contained in X. As well, the condition [x] ∩ X �= ∅ in the up-

per approximation means [x] has an overlap with X. The two condi-

tions clearly indicate the qualitative relationships between [x] and X

in Pawlak rough sets. However, the definition of Pawlak approxima-

tions in (1) does not allow any errors, and the degree of overlap is

not considered [69]. Observed by the limitation of Pawlak rough sets,

probabilistic rough sets utilize two parameters, α and β (α ≥ β), to

extend Pawlak rough sets to a more generalized model. The two ap-

proximations of probabilistic rough sets can be rewritten as:

apr
(α, β)

(X) = {x ∈ U|Pr(X|[x]) ≥ α},

apr(α, β)(X) = {x ∈ U|Pr(X|[x]) > β},
(2)

where, the rough membership function Pr(X|[x]) = |X∩[x]|
|[x]| is the con-

ditional probability of the classification [46]. The two approximations

of probabilistic rough sets can lead to three decision regions as (α, β)-

probabilistic positive, boundary and negative regions:

POS(α, β)(X) = {x ∈ U|Pr(X|[x]) ≥ α},

BND(α, β)(X) = {x ∈ U|β < Pr(X|[x]) < α},

NEG(α, β)(X) = {x ∈ U|Pr(X|[x]) ≤ β}.

(3)

According to (3), the three regions lead to three-way decisions,

namely, decision of acceptance, deferment and rejection, respec-

tively.

Specially, if α < β , we set “γ = α = β”, (3) can be rewritten as:

POS(γ , γ )(X) = {x ∈ U|Pr(X|[x]) ≥ γ },

NEG(γ , γ )(X) = {x ∈ U|Pr(X|[x]) < γ }.
(4)

For simplicity and clarity, we denote (4) as the two-way deci-

sion model. Obviously, (4) is a special case of the three-way decision

model when α = β . In addition, if we set “α = 1, β = 0”, (3) converts

to Pawlak rough set model; if we set α = β = 0.5, (3) converts to 0.5

probabilistic rough sets [30].
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